Resolving the Crossing/Kissing Fiber Ambiguity Using Functionally Informed COMMIT

  • Matteo FrigoEmail author
  • Isa Costantini
  • Rachid Deriche
  • Samuel Deslauriers-Gauthier
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The architecture of the white matter is endowed with kissing and crossing bundles configurations. When these white matter tracts are reconstructed using diffusion MRI tractography, this systematically induces the reconstruction of many fiber tracts that are not coherent with the structure of the brain. The question on how to discriminate between true positive connections and false positive connections is the one addressed in this work. State-of-the-art techniques provide a partial solution to this problem by considering anatomical priors in the false positives detection process. We propose a novel model that tackles the same issue but takes into account both structural and functional information by combining them in a convex optimization problem. We validate it on two toy phantoms that reproduce the kissing and the crossing bundles configurations, showing that through this approach we are able to correctly distinguish true positives and false positives.


Tractography False positives Diffusion MRI Resting state functional MRI 



The authors would like to thank Rebecca Bonham-Carter for the help in simulating resting state networks. This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM–Computational Brain Connectivity Mapping).


  1. 1.
    Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.C., Thiran, J.P., Verma, R.: Phantomas: a flexible software library to simulate diffusion mr phantoms. In: ISMRM (2014)Google Scholar
  4. 4.
    Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)CrossRefGoogle Scholar
  5. 5.
    Daducci, A., Barakovic, M., Girard, G., Descoteaux, M., Thiran, J.P.: Reducing false positives in tractography with microstructural and anatomical priors. In: ISMRM 2018-International Society for Magnetic Resonance in Medicine (2018)Google Scholar
  6. 6.
    Daducci, A., Dal Palú, A., Descoteaux, M., Thiran, J.P.: Microstructure informed tractography: pitfalls and open challenges. Front. Neurosci. 10, 247 (2016)CrossRefGoogle Scholar
  7. 7.
    Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: Commit: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)CrossRefGoogle Scholar
  8. 8.
    Frigo, M., Barakovic, M., Thiran, J.P., Daducci, A.: Hierarchical tractography optimisation. In: CoBCoM 2017-Computational Brain Connectivity Mapping Winter School Workshop, p. 1 (2017)Google Scholar
  9. 9.
    Frigo, M., Gallardo, G., Costantini, I., Daducci, A., Wassermann, D., Deriche, R., Deslauriers-Gauthier, S.: Reducing false positive connection in tractograms using joint structure-function filtering. In: OHBM 2018-Organization for Human Brain Mapping (2018)Google Scholar
  10. 10.
    Girard, G., Fick, R., Descoteaux, M., Deriche, R., Wassermann, D.: Axtract: microstructure-driven tractography based on the ensemble average propagator. In: International Conference on Information Processing in Medical Imaging, pp. 675–686. Springer (2015)Google Scholar
  11. 11.
    Jenatton, R., Mairal, J., Obozinski, G., Bach, F.R.: Proximal methods for sparse hierarchical dictionary learning. In: ICML, pp. 487–494 (2010) (No. 2010, Citeseer)Google Scholar
  12. 12.
    Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015)CrossRefGoogle Scholar
  13. 13.
    Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1349 (2017)CrossRefGoogle Scholar
  14. 14.
    Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)CrossRefGoogle Scholar
  15. 15.
    Pestilli, F., Yeatman, J.D., Rokem, A., Kay, K.N., Wandell, B.A.: Evaluation and statistical inference for human connectomes. Nat. Methods 11(10), 1058 (2014)CrossRefGoogle Scholar
  16. 16.
    Sanz Leon, P., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R., Jirsa, V.: The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinformatics 7, 10 (2013)CrossRefGoogle Scholar
  17. 17.
    Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Sift2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015)CrossRefGoogle Scholar
  18. 18.
    The virtual brain: the resting state network scripting tutorial (2018)Google Scholar
  19. 19.
    Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., van den Heuvel, M.P., Breakspear, M.: Connectome sensitivity or specificity: which is more important? Neuroimage 142, 407–420 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Frigo
    • 1
    Email author
  • Isa Costantini
    • 1
  • Rachid Deriche
    • 1
  • Samuel Deslauriers-Gauthier
    • 1
  1. 1.ATHENA Project TeamInria Sophia-Antipolis Mediterranée, Université Côte D’AzurNiceFrance

Personalised recommendations