Advertisement

A Framework for Calculating Time-Efficient Diffusion MRI Protocols for Anisotropic IVIM and An Application in the Placenta

  • Paddy J. SlatorEmail author
  • Jana Hutter
  • Andrada Ianus
  • Eleftheria Panagiotaki
  • Mary A. Rutherford
  • Joseph V. Hajnal
  • Daniel C. Alexander
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We develop a framework for calculating clinically-viable diffusion MRI (dMRI) protocols for anisotropic IVIM modelling. The proposed multi-stage framework combines previous approaches to dMRI protocol optimisation: first optimising b-values by minimizing Cramer-Rao lower bounds on parameter variances, and subsequently optimising gradient directions jointly to provide maximum angular coverage across all shells. This removes unnecessary measurements of closely spaced b-values with the same gradient directions, which encode very similar information, and hence reduces the total number of dMRI measurements. We applied the framework to establish an organ-specific, data-driven, set of optimised b-values and gradient directions for dMRI of the placenta. The optimised protocol leads to higher contrast-to-noise ratios in parameter maps compared to a naive protocol of comparable scan time. Applying this framework in other organs has the potential to reduce scanning times required for anisotropic IVIM modelling.

Keywords

Diffusion MRI IVIM Anisotropic IVIM Placenta Microstructural modelling Experimental design Cramer-Rao lower bound 

References

  1. 1.
    Abdullah, O.M., Gomez, A.D., Merchant, S., Heidinger, M., Poelzing, S., Hsu, E.W.: Orientation dependence of microcirculation-induced diffusion signal in anisotropic tissues. Magn. Reson. Med., Oct 2015. n/a–n/a.  https://doi.org/10.1002/mrm.25980CrossRefGoogle Scholar
  2. 2.
    Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60(2), 439–448 (2008).  https://doi.org/10.1002/mrm.21646CrossRefGoogle Scholar
  3. 3.
    Bonel, H.M., Stolz, B., Diedrichsen, L., Frei, K., Saar, B., Tutschek, B., Raio, L., Surbek, D., Srivastav, S., Nelle, M., Slotboom, J., Wiest, R.: Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology 257(3), 810–819 (2010).  https://doi.org/10.1148/radiol.10092283CrossRefGoogle Scholar
  4. 4.
    Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med./Soc. Magn. Reson. Med. 69(6), 1534–1540 (2013).  https://doi.org/10.1002/mrm.24736CrossRefGoogle Scholar
  5. 5.
    Derwig, I., Barker, G.J., Poon, L., Zelaya, F., Gowland, P., Lythgoe, D.J., Nicolaides, K.: Association of placental T2 relaxation times and uterine artery Doppler ultrasound measures of placental blood flow. Placenta 34(6), 474–479 (2013).  https://doi.org/10.1016/j.placenta.2013.03.005CrossRefGoogle Scholar
  6. 6.
    Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26(2), 375–385 (2007).  https://doi.org/10.1002/jmri.20969CrossRefGoogle Scholar
  7. 7.
    Finkenstaedt, T., Klarhoefer, M., Eberhardt, C., Becker, A.S., Andreisek, G., Boss, A., Rossi, C.: The IVIM signal in the healthy cerebral gray matter: a play of spherical and non-spherical components. NeuroImage 152, 340–347 (2017).  https://doi.org/10.1016/j.neuroimage.2017.03.004CrossRefGoogle Scholar
  8. 8.
    Grussu, F., Schneider, T., Zhang, H., Alexander, D.C., Wheeler-Kingshott, C.A.: Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage 111, 590–601 (2015).  https://doi.org/10.1016/j.neuroimage.2015.01.045CrossRefGoogle Scholar
  9. 9.
    Hilbert, F., Bock, M., Neubauer, H., Veldhoen, S., Wech, T., Bley, T.A., Köstler, H.: An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed. 29(10), 1403–1413 (2016).  https://doi.org/10.1002/nbm.3584CrossRefGoogle Scholar
  10. 10.
    Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999).  https://doi.org/10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-QCrossRefGoogle Scholar
  11. 11.
    Karampinos, D.C., King, K.F., Sutton, B.P., Georgiadis, J.G.: Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature. J. Magn. Reson. Imaging 31(4), 942–953 (2010).  https://doi.org/10.1002/jmri.22100CrossRefGoogle Scholar
  12. 12.
    Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2), 497–505 (1988).  https://doi.org/10.1148/radiology.168.2.3393671CrossRefGoogle Scholar
  13. 13.
    Liu, A.L., Mikheev, A., Rusinek, H., Huang, W.C., Wysock, J.S., Babb, J.S., Feiweier, T., Stoffel, D., Chandarana, H., Sigmund, E.E.: REnal flow and microstructure AnisotroPy (REFMAP) MRI in normal and peritumoral renal tissue. J. Magn. Reson. Imaging, 1–10 (2018).  https://doi.org/10.1002/jmri.25940CrossRefGoogle Scholar
  14. 14.
    Moore, R., Strachan, B., Tyler, D., Duncan, K., Baker, P., Worthington, B., Johnson, I., Gowland, P.: In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta 21(7), 726–732 (2000).  https://doi.org/10.1053/plac.2000.0567CrossRefGoogle Scholar
  15. 15.
    Notohamiprodjo, M., Chandarana, H., Mikheev, A., Rusinek, H., Grinstead, J., Feiweier, T., Raya, J.G., Lee, V.S., Sigmund, E.E.: Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn. Reson. Med. 73(4), 1526–1532 (2015).  https://doi.org/10.1002/mrm.25245CrossRefGoogle Scholar
  16. 16.
    Panagiotaki, E., Walker-Samuel, S., Siow, B., Johnson, S.P., Rajkumar, V., Pedley, R.B., Lythgoe, M.F., Alexander, D.C.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74(7), 1902–1912 (2014).  https://doi.org/10.1158/0008-5472.CAN-13-2511CrossRefGoogle Scholar
  17. 17.
    Slator, P.J., Hutter, J., McCabe, L., Gomes, A.D.S., Price, A.N., Panagiotaki, E., Rutherford, M.A., Hajnal, J.V., Alexander, D.C.: Placenta microstructure and microcirculation imaging with diffusion MRI. Magn. Reson. Med., Dec 2017.  https://doi.org/10.1002/mrm.27036CrossRefGoogle Scholar
  18. 18.
    Sohlberg, S., Mulic-Lutvica, A., Lindgren, P., Ortiz-Nieto, F., Wikström, A.K., Wikström, J.: Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta 35(3), 202–206 (2014).  https://doi.org/10.1016/j.placenta.2014.01.008CrossRefGoogle Scholar
  19. 19.
    Sohlberg, S., Mulic-Lutvica, A., Olovsson, M., Weis, J., Axelsson, O., Wikström, J., Wikström, A.K.: Magnetic resonance imaging-estimated placental perfusion in fetal growth assessment. Ultrasound Obstet. Gynecol. 46(6), 700–705 (2015).  https://doi.org/10.1002/uog.14786CrossRefGoogle Scholar
  20. 20.
    Song, F., Wu, W., Qian, Z., Zhang, G., Cheng, Y.: Assessment of the placenta in intrauterine growth restriction by diffusion-weighted imaging and proton magnetic resonance spectroscopy. Reprod. Sci. 24(4), 575–581 (2017).  https://doi.org/10.1177/1933719116667219CrossRefGoogle Scholar
  21. 21.
    Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B.: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage 81, 335–346 (2013).  https://doi.org/10.1016/j.neuroimage.2013.05.028CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paddy J. Slator
    • 1
    Email author
  • Jana Hutter
    • 2
    • 3
  • Andrada Ianus
    • 1
  • Eleftheria Panagiotaki
    • 1
  • Mary A. Rutherford
    • 2
  • Joseph V. Hajnal
    • 2
    • 3
  • Daniel C. Alexander
    • 1
  1. 1.Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Centre for the Developing Brain, King’s College LondonLondonUK
  3. 3.Biomedical Engineering DepartmentKing’s College LondonLondonUK

Personalised recommendations