Advertisement

Properties of Nano-composites Based on Different Clays and Polyamide 6/Acrylonitrile Butadiene Styrene Blends

  • Marya Raji
  • Elmokhtar Essassi
  • Hamid Essabir
  • Denis Rodrigue
  • Abou el kacem Qaiss
  • Rachid BouhfidEmail author
Chapter

Abstract

In the last years, serval researches have been focused on organophilic clay as reinforcements for polymer matrices. In this respect, the aim of this chapter is to valorize mineral resources; montmorillonite clay was modified using hexadecyltrimethylammonium bromide (CTAB) and then used as reinforcement in a thermoplastic copolymer matrix to compare with pristine montmorillonite and commercially organo-modified montmorillonite (Cloisite 20A). The nano-composites were prepared by melt compounding using a blend of polyamide 6 (PA6) with acrylonitrile butadiene styrene (ABS) as the matrix. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) as well as mechanical and rheological tests were carried out to understand the properties of these nano-composites at different particle contents. The results obtained clearly showed that the Moroccan montmorillonite was successfully modified and its addition in the selected matrix substantially improved the properties of the resulting nano-composites.

Keywords

Montmorillonite Polyamide 6 Acrylonitrile butadiene styrene Surface modification Nano-composites 

References

  1. Abdellaoui H et al (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14(2):379–389MathSciNetCrossRefGoogle Scholar
  2. Agag T, Koga T, Takeichi T (2001) Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer 42(8):3399–3408CrossRefGoogle Scholar
  3. Akin O, Tihminlioglu F (2018) Effect of organo-modified clay addition on properties of polyhydroxy butyrate homo and copolymers nanocomposite films for packaging applications. 26(3):1121–1132Google Scholar
  4. Albano C, González J, Ichazo M, Kaiser D (1999) Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66(2):179–190CrossRefGoogle Scholar
  5. Amendola E et al (2012) Epoxy nanocomposites based on silylated montmorillonite: effect of the coupling agents structure on the mechanical properties. Macromolecules 6:33–36CrossRefGoogle Scholar
  6. Aowda SA, Jaffar Al-mulla EA, Baqir SJ (2011) Modification of montmorillonite, using different phosphonium salts, study their effect upon the structure. J Al-padisiyah Pure Sci 16:1–10Google Scholar
  7. ASTM D 4092 – 01 (2013) Standard terminology for plastics: dynamic mechanical properties. ASTM Int 1–4Google Scholar
  8. Bensalah H et al (2017) Mechanical, thermal, and rheological properties of polypropylene hybrid composites based clay and graphite. J Compos Mater 51(25):3563–3576CrossRefGoogle Scholar
  9. Bergaya F, Lagaly G (2013) General introduction: clays, clay minerals, and clay science. In: Handbook of clay science. Elsevier, Netherlands, pp 1–19Google Scholar
  10. Bhat G, Hegde RR, Kamath MG, Deshpande B (2008) Nanoclay reinforced fibers and nonwovens. J Eng Fibers Fabr 3(3):22–34Google Scholar
  11. Bhattacharya SS, Aadhar M (2014) Studies on preparation and analysis of organoclay nano particles. Res J Eng Sci 3(3):10–16Google Scholar
  12. Bidsorkhi HC et al (2014) Mechanical, thermal and flammability properties of ethylene-vinyl acetate (EVA)/sepiolite nanocomposites. Polym Test 37:117–122CrossRefGoogle Scholar
  13. Boujmal R et al (2017) Alfa fibers/clay hybrid composites based on polypropylene. J Thermoplast Compos Mater 31(7):974–991CrossRefGoogle Scholar
  14. Carastan DJ et al (2013) Morphological evolution of oriented clay-containing block co-polymer nanocomposites under elongational flow. Eur Polym J 49(6):1391–1405CrossRefGoogle Scholar
  15. Carrado KA (2000) Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Appl Clay Sci 17(1–2):1–23CrossRefGoogle Scholar
  16. de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24Google Scholar
  17. Diagne M et al (2006) The effect of photo-oxidation on thermal and fire retardancy of polypropylene nanocomposites. J Mater Sci 41(21):7005–7010CrossRefGoogle Scholar
  18. Donescu D, Vuluga Z, Radovici C, Serban S (2008) Modification of organosilicate with silane coupling agents for polymer nanocomposites. Mater Plastice 45(4):305–309Google Scholar
  19. Erden S, Ho K (2017) Composites science and engineering. Fiber technology for fiber-reinforced composites. Woodhead Publishing is an imprint of ElsevierGoogle Scholar
  20. Essabir H et al (2016a) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater 93:134–144CrossRefGoogle Scholar
  21. Essabir H, Raji M, Bouh R (2016b) Nanoclay and natural fibers based hybrid composites: mechanical, morphological, thermal and rheological properties. In Nanoclay reinforced polymer composites, pp 29–49Google Scholar
  22. Essabir H et al (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28(22):17120–17130CrossRefGoogle Scholar
  23. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46(16):6001–6008CrossRefGoogle Scholar
  24. Fujimori A, Kusaka J, Nomura R (2010) Formation and structure of organized molecular films for organo-modified montmorillonite and mixed monolayer behavior with poly(l-lactide). Polym Eng Sci 51(6):1–9Google Scholar
  25. Gacitua EW, Aldo Ballerini A, Zhang J (2005) Polymer nanocomposites : synthetic and natural fillers. Maderas Ciencia y tecnología 7(3):159–178Google Scholar
  26. Gao F (2004) Clay/polymer composites: the story. Mater Today 7(November):50–55CrossRefGoogle Scholar
  27. Gavrilko TA et al (2013) Molecular dynamics and phase transitions behavior of binary mixtures of fatty acids and cetyltrimethylammonium bromide as studied via davydov splitting of molecular vibrational modes. Ukrainian J Phys 58(7):636–645CrossRefGoogle Scholar
  28. González JA, Del M (2006) Bleaching of kaolins and clays by chlorination of iron and titanium. Appl Clay Sci 33:219–229CrossRefGoogle Scholar
  29. Guggenheim S et al (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of Association Internationale Pour l’Etude Des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner 54:761–772CrossRefGoogle Scholar
  30. Hakeem KR, Jawaid M, Rashid U (2014) Fuel and energy abstracts. Biomass and bioenergy processing and properties. Springer, BerlinGoogle Scholar
  31. He A et al (2010) Structural design of imidazolium and its application in PP/montmorillonite nanocomposites. Polym Degrad Stab 95(4):651–655.  https://doi.org/10.1016/j.polymdegradstab.2009.12.003CrossRefGoogle Scholar
  32. Hoidy WH, Al-mulla EAJ (2013) Study of preparation for co-polymer nanocomposites using PLA/LDPE/CTAB modified clay. Iraqi Nat J Chem 49:61–72Google Scholar
  33. Jeong E, Lim JW, Seo KW, Lee YS (2011) Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites. J Ind Eng Chem 17(1):77–82CrossRefGoogle Scholar
  34. Kokal I, Somer M, Notten PHL, Hintzen HT (2011) Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 185(1):42–46CrossRefGoogle Scholar
  35. Kumar R, Yakabu MK, Anandjiwala RD (2010) Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos A Appl Sci Manuf 41(11):1620–1627CrossRefGoogle Scholar
  36. Laaziz SA et al (2017) Bio-composites based on polylactic acid and argan nut shell: production and properties. Int J Biol Macromol 104:30–42CrossRefGoogle Scholar
  37. Laoutid F, Persenaire O, Bonnaud L, Dubois P (2013) Flame retardant polypropylene through the joint action of sepiolite and polyamide 6. Polym Degrad Stab 98(10):1972–1980CrossRefGoogle Scholar
  38. Leszczy A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal part II : thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454(1):1–22Google Scholar
  39. Li Y, Shimizu H (2005) Co-continuous polyamide 6 (PA6)/Acrylonitrile-Butadiene-Styrene (ABS) nanocomposites. Macromol Rapid Commun 26(9):710–715CrossRefGoogle Scholar
  40. Majeed K et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410CrossRefGoogle Scholar
  41. Mansoori Y, Roojaei K, Zamanloo MR, Imanzadeh G (2012) Polymer-clay nanocomposites via chemical grafting of polyacrylonitrile onto cloisite 20A. Bull Mater Sci 35(7):1063–1070CrossRefGoogle Scholar
  42. Mejía A, García N, Guzmán J, Tiemblo P (2014) Surface modification of sepiolite nanofibers with PEG based compounds to prepare polymer electrolytes. Appl Clay Sci 95:265–274CrossRefGoogle Scholar
  43. Navrátilová Z, Wojtowicz P, Vaculíková L, Šugárková V (2007) Sorption of alkylammonium cations on montmorillonite. Acta Geodyn Geomater 4(3):59–65Google Scholar
  44. Nazir MS et al (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In Nanoclay reinforced polymer composites, pp 29–49. http://link.springer.com/10.1007/978-981-10-0950-1CrossRefGoogle Scholar
  45. Nekhlaoui S et al (2014) Fracture study of the composite using essential work of fracture method: PP–SEBS–g–MA/E1 clay. Mater Des 53:741–748CrossRefGoogle Scholar
  46. Nuzzo A et al (2014) Nanoparticle-induced co-continuity in immiscible polymer blends—a comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer 55(19):4908–4919CrossRefGoogle Scholar
  47. Oliveira M, Machado AV (2013) Preparation of polymer-based nanocomposites by different routes. In: Nanocomposites: synthesis, characterization and applications. NOVA Publishers, New York, pp 1–22Google Scholar
  48. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  49. Pretschuh C, Schwarzinger C, Abdala AA, Vukusic S (2014) Characterization of conductive nanographite melamine composites. Open J Compos Mater 4:61–71CrossRefGoogle Scholar
  50. Raji M, Essabir H et al (2016a) Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polym Polym Compos 16(2):101–113Google Scholar
  51. Raji M, Mekhzoum MEM et al (2016b) Nanoclay modification and functionalization for nanocomposites development: effect on the structural, morphological, mechanical and rheological properties. In: Nanoclay reinforced polymer composites, pp 1–34Google Scholar
  52. Raji M, Essabir H, Rodrigue D et al (2017a) Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites. https://doi.org/10.1002/pc.24292CrossRefGoogle Scholar
  53. Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2017b) Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. In: Handbook of composites from renewable materials. Wiley, Hoboken, pp 225–252CrossRefGoogle Scholar
  54. Santos KS et al (2013) The influence of screw configurations and feed mode on the dispersion of organoclay on PP. Políymer 23(2):175–181CrossRefGoogle Scholar
  55. Singla P, Mehta R, Upadhyay SN (2012) Clay modification by the use of organic cations. Green Sustain Chem 2:21–25CrossRefGoogle Scholar
  56. Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3(1):1–25CrossRefGoogle Scholar
  57. Tamura K, Yokoyama S, Pascua CS, Yamada H (2008) New age of polymer nanocomposites containing dispersed high-aspect-ratio silicate nanolayers. Chem Mater 20(6):2242–2246CrossRefGoogle Scholar
  58. Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Compos Sci Technol 68(2):451–460CrossRefGoogle Scholar
  59. Tian H, Tagaya H (2007) Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. J Mater Sci 42(9):3244–3250CrossRefGoogle Scholar
  60. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53(3–4):73–197CrossRefGoogle Scholar
  61. Usuki A (2002) Preparation and properties of EPDM—clay hybrids. Polymer 43(8):2185–2189CrossRefGoogle Scholar
  62. Vuluga Z et al (2014) The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocomposites. J Alloy Compd 616:569–576CrossRefGoogle Scholar
  63. Wang K et al (2013) Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stab 98(7):1275–1286CrossRefGoogle Scholar
  64. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169CrossRefGoogle Scholar
  65. Xie A et al (2011) Microstructure and antibacterial activity of phosphonium montmorillonites. Bull Korean Chem Soc 32(6):1936–1938CrossRefGoogle Scholar
  66. Xue W, He H, Zhu J, Yuan P (2007) FTIR investigation of CTAB-Al-Montmorillonite complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 67(3–4):1030–1036CrossRefGoogle Scholar
  67. Yan W et al (2012) Morphology and mechanical properties of Acrylonitrile-Butadiene-Styrene (ABS)/polyamide 6 (PA6) nanocomposites prepared via melt mixing. J Macromol Sci Part B 51(1):70–82CrossRefGoogle Scholar
  68. Yürüdü C et al (2005) Synthesis and characterization of HDA/NaMMT organoclay. Bull Mater Sci 28(6):623–628CrossRefGoogle Scholar
  69. Zari N, Raji M, El Mghari H, Bouhfid R (2018) Nanoclay and polymer-based nanocomposites: materials for energy efficiency. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead, UK, pp 75–103CrossRefGoogle Scholar
  70. Zeng QH, Yu AB, Lu GQ, Paul DR (2005) Clay-based polymer nanocomposites: research and commercial development. J Nanosci Nanotechnol 5:1574–1592CrossRefGoogle Scholar
  71. Zhang Z, Zhang J, Liao L, Xia Z (2013) Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Mater Res Bull 48(5):1811–1816CrossRefGoogle Scholar
  72. Zhao Y, Abdullayev E, Vasiliev Ae, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406(June):121–129CrossRefGoogle Scholar
  73. Zotti A et al (2014) Effect of sepiolite filler on mechanical behaviour of a bisphenol A-based epoxy system. Compos B Eng 67:400–409CrossRefGoogle Scholar
  74. Zýková J, Kalendová A, Kovářová L, Maláč J (2009) Influence of intercalation agents on the thermal stability of Pvc/clay. Nanocon 20(10):1–4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marya Raji
    • 1
    • 2
  • Elmokhtar Essassi
    • 2
  • Hamid Essabir
    • 1
  • Denis Rodrigue
    • 3
  • Abou el kacem Qaiss
    • 1
  • Rachid Bouhfid
    • 1
    Email author
  1. 1.Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Laboratory of Polymer ProcessingInstitute of Nanomaterials and Nanotechnology (NANOTECH)RabatMorocco
  2. 2.Laboratory of Organic Chemistry and Heterocyclic, Faculty of ScienceMohammed V UniversityRabatMorocco
  3. 3.Department of Chemical Engineering and CERMAUniversité LavalQuebec CityCanada

Personalised recommendations