Advertisement

Nanofibrillated Cellulose-Based Nanocomposites

  • Hind Abdellaoui
  • Marya Raji
  • Hamid Essabir
  • Rachid Bouhfid
  • Abou el kacem QaissEmail author
Chapter

Abstract

Nanofibrillated cellulose (NFC), a form of nanocellulose, is currently recommended to be utilized in a wide of industrial applications like food packaging, printing, paper, biomedical, and nanocomposite materials. Their exploitation is not a coincidence, but a fruitful result of many studies showing that NFCs have exciting characteristics such as renewable, sustainable, recyclable, the high length-to-diameter ratio (aspect ratio), and high mechanical properties at the nanometric scale. This chapter is a boon to show the added value of NFCs and their applications in nanocomposites materials. To do this, this content deals with two parts: the first one focuses on the extraction of the NFCs from the cellulosic fiber, their structures, and the processes allowing to modify/treated nanocellulose surface to make it compatible with the polymer matrix. In the second part, focused on the manufacturing process of nanocomposites, their properties and the industrial applications are discussed in depth.

Keywords

Nanofibrillated cellulose Modify/treated nanocellulose Nanocomposites 

References

  1. Abdellaoui H, Echaabi J (2014) Rheological models for modeling the viscoelastic behavior in liquid composite molding processes (LCM) review. J Reinf Plast Compos 33(8):1–19Google Scholar
  2. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, el kacem Qaiss A (2015a) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113Google Scholar
  3. Abdellaoui H, Bouhfid R, Echaabi J, el kacem Qaiss A (2015b) Experimental and modeling study of viscoelastic behaviour of woven dried jute under compressive stress. J Reinf Plast Compos 34(5):405–420Google Scholar
  4. Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14(2):379–389Google Scholar
  5. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639Google Scholar
  6. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24Google Scholar
  7. Ait Laaziz S, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R (2017) Bio-composites based on polylactic acid and Argan nut shell: production and properties. Int J Biol Macromol 104:30–42Google Scholar
  8. Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Căşărică A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12(9):968–975Google Scholar
  9. Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218–230Google Scholar
  10. Araújo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775Google Scholar
  11. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442Google Scholar
  12. Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240Google Scholar
  13. Benyahia A, Merrouche A, Rokbi M, Kouadri Z (2013) Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber Alfa abstract. 21ème Congrès Français de Mécanique, 1–6Google Scholar
  14. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169Google Scholar
  15. Doktor G, Fakult N, Ashraf H, Asran S, Sayed A, Gutachter K, Michler GH (2011) Electrospinning of polymeric nanofibers and nanocomposite materials: fabrication, physicochemical characterization and medical applicationsGoogle Scholar
  16. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33Google Scholar
  17. El Makssoudi A, Abdellaoui H, El Ouatib R, Tahiri M (2014) Development of composite materials based on expanded perlite and plastic wastes. Mechanic-chemical properties. In: 2nd annual international conference on chemistry, chemical engineering and chemical process (CCECP 2014), pp 38–46Google Scholar
  18. Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohyd Polym 127:381–389Google Scholar
  19. Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448Google Scholar
  20. Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016a) Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohyd Polym 143:70–83Google Scholar
  21. Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016b) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43Google Scholar
  22. Essabir H, Raji M, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28(22):17120–17130Google Scholar
  23. Farias D, Cordeiro R, Canabarro BR, Scholz S, Sim RA (2017) Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites [João Gabriel Guimarães de Farias a, Rafael Cordeiro Cavalcante a]. Carbohydr Polym 165:429–436Google Scholar
  24. Gacitua EW, Ballerini AA, Jinwen Z (2005) Polymer nanocomposites: synthetic and natural fillers. Maderas Ciencia Y Tecnología 7(3):159–178Google Scholar
  25. Gantayat S, Rout D, Swain SK (2017) Structural and mechanical properties of functionalized carbon nanofiber/epoxy nanocomposites. Mater Today Proc 4(8):9060–9064Google Scholar
  26. Grumezescu AM (2017). Food packaging nanotechnology in the agri-food industry, vol 7. Elsevier Inc, Netherlands, p 805Google Scholar
  27. Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers. In: IOP conference series: materials science and engineering, vol 149. pp 12091Google Scholar
  28. Hakeem KR, Mohammad J, Alothman Othman Y (2011) Agricultural biomass based potential materials. Springer International Publishing, SwitzerlandGoogle Scholar
  29. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Biores Technol 102:2910–2915Google Scholar
  30. Hamour N, Boukerrou A, Djidjelli H, Maigret JE, Beaugrand J (2015) Effects of MAPP compatibilization and acetylation treatment followed by hydrothermal aging on polypropylene alfa fiber composites. Int J Polym SciGoogle Scholar
  31. Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modi fi. Powder Technol 207(1–3):296–303Google Scholar
  32. Hietala M, Mathew AP, Oksman K (2012) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 1–7Google Scholar
  33. Hoidy WH, Al-mulla EAJ (2013) Study of preparation for co-polymer nanocomposites using PLA/LDPE/CTAB modified clay. Iraqi Nat J Chem 49:61–72Google Scholar
  34. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects: review. Biores Technol 199:103–112Google Scholar
  35. Khalil HPSA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: Polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 475–511Google Scholar
  36. Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Graphene-based polymer nanocomposites in electronics, Springer series on polymer and composite materials, pp 25–47Google Scholar
  37. Kim H, Hong J, Pyo S (2018) Acoustic characteristics of sound absorbable high performance concrete. Appl Acoust 138(April):171–178Google Scholar
  38. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873Google Scholar
  39. Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Pelagia Res Libr 2(4):219–228Google Scholar
  40. Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol 70(2):231–239Google Scholar
  41. Li X, Panigrahi S (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. Appl Eng Agric 25(3):1–11Google Scholar
  42. Menon MP, Selvakumar R, Kumar PS, Ramakrishna S (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental application. Roy Soc Chem 7:42750–42773Google Scholar
  43. Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257Google Scholar
  44. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15Google Scholar
  45. Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. BioResources 6(2):1988–2003Google Scholar
  46. Niazi MBK, Jahan Z, Berg SS, Gregersen ØW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohyd Polym 177:258–268Google Scholar
  47. Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769Google Scholar
  48. Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574Google Scholar
  49. Qu T, Zhang X, Gu X, Han L, Ji G, Chen X, Xiao W (2017) Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. Am Chem Soc 5:7733–7742Google Scholar
  50. Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polym Polym Compos 16(2):101–113Google Scholar
  51. Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2017a) Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. In: Handbook of composites from renewable materials. Wiley, Hoboken, pp 225–252Google Scholar
  52. Raji M, Essabir H, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017b) Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites. Polym Polym Compos.  https://doi.org/10.1002/pc.24292Google Scholar
  53. Raji M, Mekhzoum MEM, Rodrigue D, el kacem Qaiss A, Bouhfid R (2018) Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos Part B.  https://doi.org/10.1016/j.compositesb.2018.04.013Google Scholar
  54. Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273Google Scholar
  55. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828Google Scholar
  56. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363Google Scholar
  57. Sdrobi A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43(4):1873–1880Google Scholar
  58. Shauddin SM, Shaha CK, Khan MA (2014) Effects of fiber inclusion and γ radiation on physico-mechanical properties of jute caddies reinforced waste polyethylene composite. J Polym Biopolym Phys Chem 2(4):91–97Google Scholar
  59. Singh TJ, Samanta S (2014) Characterization of natural fiber reinforced composites-bamboo and sisal: a review. IJRET: Int J Res Eng Technol 3(7):187–195Google Scholar
  60. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A Appl Sci Manuf 39(5):875–886Google Scholar
  61. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494Google Scholar
  62. Solyman WSE, Nagiub HM, Alian NA, Shaker NO, Kandil UF (2017) Synthesis and characterization of phenol/formaldehyde nanocomposites: studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology. J Radiat Res Appl Sci 10(1):72–79Google Scholar
  63. Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Paper Chem 28(2):216–238Google Scholar
  64. Stocchi A, Lauke B, Vázquez A, Bernal C (2007) A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos A Appl Sci Manuf 38(5):1337–1343Google Scholar
  65. Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites: review. Proc Pakistan Acad Sci 44:129–144Google Scholar
  66. Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777Google Scholar
  67. Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd Polym 136:485–492Google Scholar
  68. Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Applied polymer symposium, vol 37. Wiley, New York, pp 815–827Google Scholar
  69. Vatai G (2010) Separation technologies in the processing of fruit juices. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead Publishing series in food science, technology and nutrition, pp 381–395. Woodhead Publishing Limited, UKGoogle Scholar
  70. Vazquez A, Foresti M, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application, pp 81–118Google Scholar
  71. Wang W, Sabo RC, Mozuch MD, Kersten P, Jin JYZY (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558Google Scholar
  72. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41(7):806–819Google Scholar
  73. Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technol 12(1):52–58Google Scholar
  74. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788Google Scholar
  75. Zari N, Raji M, El Mghari H, Bouhfid R, el kacem Qaiss A (2018) Nanoclay and polymer-based nanocomposites: materials for energy efficiency. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead, UK, pp 75–103Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hind Abdellaoui
    • 1
  • Marya Raji
    • 1
  • Hamid Essabir
    • 1
  • Rachid Bouhfid
    • 1
  • Abou el kacem Qaiss
    • 1
    Email author
  1. 1.Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR)RabatMorocco

Personalised recommendations