Advertisement

Fillers and Reinforcements for Advanced Nanocomposites

  • Nilesh Kumar Shrivastava
  • Muhammad Akmal Ahmad Saidi
  • Norhayani OthmanEmail author
  • Mohamad Zurina
  • Azman Hassan
Chapter

Abstract

The performance and properties of nanocomposites largely depend on its nanofiller and reinforcement. This chapter presents an overview of the different types of nanofiller and reinforcement in biopolymer nanocomposite. It mainly focuses on the preparation, processing, properties, and the application of the bio-nanocomposite. Bio-nanocomposite based on biopolymer such as poly(lactic acid) (PLA), poly(e-caprolactone) (PCL), poly(vinyl alcohol) (PVA), poly(hydroxybutyrate) (PHB), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), and chitosan, and nanofiller such as graphene, carbon nanotube, layered silicate reinforcement, sepiolite, and halloysite nanofiller has become a topic of discussion, and their performance and future application become a focus of interest. Enhanced mechanical and thermal properties imparted by the nanofiller reinforcement on the bio-nanocomposite and its optimum loading had been reviewed. It can be concluded that the properties of bio-nanocomposite could be further enhanced by the utilization of compatibilizer, coupling agent, and nanofiller treatment in bio-nanocomposite, which play an important role in enhancing the compatibility between the component of bio-nanocomposite and state of nanofiller dispersion and distribution in bio-nanocomposite.

Keywords

Nanofiller Reinforcement Mechanical properties Thermal properties Graphene Carbon nanotubes Layered silicates Sepiolite Halloysite 

References

  1. Ajayan P, Stephan O, Colliex C et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176):1212–1214CrossRefGoogle Scholar
  2. Alcântara ACS, Darder M, Aranda P et al (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci 96:2–8CrossRefGoogle Scholar
  3. Ambrosio-Martin J, Gorrasi G, Lopez-Rubio A et al (2015a) On the use of ball milling to develop PHBV—graphene nanocomposites (I)—morphology, thermal properties, and thermal stability. J Appl Polym Sci.  https://doi.org/10.1002/app.42101CrossRefGoogle Scholar
  4. Ambrosio-Martin J, Gorrasi G, Lopez-Rubio A et al (2015b) On the use of ball milling to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graphene nanocomposites (II)—mechanical, barrier, and electrical properties. J Appl Polym Sci.  https://doi.org/10.1002/app.42217CrossRefGoogle Scholar
  5. Arjmandi R, Hassan A, Haafiz MM et al (2017) Hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites: a comparative study based on formulation design. In: Cellulose-reinforced nanofibre composites. Elsevier, Netherlands, pp 25–44CrossRefGoogle Scholar
  6. Balakrishnan H, Hassan A, Wahit MU et al (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298CrossRefGoogle Scholar
  7. Barrett JS, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) elastomers and their graphene nanocomposites. Macromolecules 47(12):3926–3941CrossRefGoogle Scholar
  8. Bocchini S, Fukushima K, Blasio AD et al (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11(11):2919–2926CrossRefGoogle Scholar
  9. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155CrossRefGoogle Scholar
  10. Botta L, Scaffaro R, Sutera F et al (2018) Reprocessing of PLA/graphene nanoplatelets nanocomposites. Polymers.  https://doi.org/10.3390/polym10010018
  11. Chang JH, An YU, Cho D et al (2003) Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44(13):3715–3720CrossRefGoogle Scholar
  12. Chen G, Hao G, Guo T et al (2004) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J Appl Polym Sci 93(2):655–661CrossRefGoogle Scholar
  13. Choi WM, Kim TW, Park OO et al (2003) Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)–organoclay nanocomposites. J Appl Polym Sci 90(2):525–529CrossRefGoogle Scholar
  14. Chrissafis K (2010) Detail kinetic analysis of the thermal decomposition of PLA with oxidized multi-walled carbon nanotubes. Thermochim Acta 511(1–2):163–167CrossRefGoogle Scholar
  15. Frydrych M, Wan C, Stengler R et al (2011) Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J Mater Chem 21:9103–9111CrossRefGoogle Scholar
  16. Galàn E, Singer A (eds) (2011) Developments in clay science. Elsevier, NetherlandsGoogle Scholar
  17. Gao Y,  Picot OT,  Bilotti E et al (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal 86:117–131CrossRefGoogle Scholar
  18. Giuseppe C, Giuseppe L, Stefana M (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536CrossRefGoogle Scholar
  19. Gorrasi G, Tortora M, Vittoria V et al (2002) Transport and mechanical properties of blends of poly(ε-caprolactone) and a modified montmorillonite poly(ε-caprolactone) nanocomposite. J Polym Sci Part B Polym Phys 40(11):1118–1124CrossRefGoogle Scholar
  20. Gouvêa RF, Del Aguila EM, Paschoalin VMF et al (2018) Extruded hybrids based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and reduced graphene oxide composite for active food packaging. Food Pack Shelf Life 16:77–85CrossRefGoogle Scholar
  21. Hassan FS, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462CrossRefGoogle Scholar
  22. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  23. Kalappa P, Benoıt L, Michel S, Marie FL, Patricia K (2013) Poly(lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J Appl Polym Sci 128:1895–1903Google Scholar
  24. Kang SL, Young WC (2013) Thermal, mechanical, and rheological properties of poly(ε-caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci 128(5):2807–2816CrossRefGoogle Scholar
  25. Khandal D, Pollet E, Avérous L (2016) Elaboration and behavior of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-nano-biocomposites based on montmorillonite or sepiolite nanoclays. Eur Polym J 81:64–76CrossRefGoogle Scholar
  26. Killeen D, Frydrych M, Chen B (2012) Porous poly(vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties. Mater Sci Eng C 32:749–757CrossRefGoogle Scholar
  27. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530CrossRefGoogle Scholar
  28. Kuan C-F, Kuan HC, Ma CCM et al (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69(5–6):1395–1398CrossRefGoogle Scholar
  29. Larissa NC, Janaina SC, Raquel SM (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos Part A 42:1601–1608CrossRefGoogle Scholar
  30. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  31. Lee H-H, Shin US, Jin GZ et al (2011) Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs. Bull Korean Chem Soc 32(1):157–161CrossRefGoogle Scholar
  32. Li MX, Kim SH, Choi SW et al (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Compos Part B 96:248–254CrossRefGoogle Scholar
  33. Lim ST, Hyun YH, Lee CH et al (2003) Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J Mater Sci Lett 22(4):299–302CrossRefGoogle Scholar
  34. Liu M,  Pu M, Ma H (2012) Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology 72(13):1508–1514CrossRefGoogle Scholar
  35. Maiti P, Batt C (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59Google Scholar
  36. Marius M, Anne LD, Yoann P et al (2012) Polylactide (PLA)—halloysite nanocomposites: production, morphology and key-properties. J Polym Environ 20:932–943CrossRefGoogle Scholar
  37. Meng Z, Zheng W, Li L et al (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL–MWCNTs by electrospinning. Mater Sci Eng C 30(7):1014–1021CrossRefGoogle Scholar
  38. Mingxian L, Yun Z, Changren Z (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75–76:52–59Google Scholar
  39. Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1–4):133–139CrossRefGoogle Scholar
  40. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  41. Montagna LS, Montanheiro TLDA, Borges AC et al (2017a) Biodegradation of PHBV/GNS nanocomposites by Penicillium funiculosum. J Appl Polym Sci.  https://doi.org/10.1002/app.44234
  42. Montagna LS, Montanheiro TLDA, Machado JPB et al (2017b) Effect of graphite nanosheets on properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Polym Sci.  https://doi.org/10.1155/2017/9316761CrossRefGoogle Scholar
  43. Montagna LS, Montanheiro TLDA, Passador FR et al (2018) The Influence of artificial photodegradation on properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphite nanosheets (GNS) nanocomposites. J Polym Environ 26(4):1511–1519CrossRefGoogle Scholar
  44. Nazir MS, Kassim MHM, Mohapatra L et al (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Nanoclay reinforced polymer composites. Springer, Berlin, pp 35–55CrossRefGoogle Scholar
  45. Nikolic MS, Petrovic R, Veljovic D et al (2017) Effect of sepiolite organomodification on the performance of PCL/sepiolite nanocomposites. Eur Polym J 97:198–209CrossRefGoogle Scholar
  46. Nima M, Zurina M, Nazila D (2015) Study of silane treatment on poly‐lactic acid(PLA)/sepiolite nanocomposite thin films. J Appl Polym Sci 132(6)Google Scholar
  47. Nuona A, Li X, Zhu X et al (2015) Starch/polylactide sustainable composites: interface tailoring with graphene oxide. Compos Part A Appl Sci Manuf 69:247–254CrossRefGoogle Scholar
  48. Nurbaiti AH, Mat UW, Qipeng G et al (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97CrossRefGoogle Scholar
  49. Ochoa M, Collazos N, Le T et al (2017) Nanocellulose-PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization. Carbohydr Polym 159:116–124CrossRefGoogle Scholar
  50. Ogata N, Jimenez G, Kawai H et al (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B Polym Phys 35(2):389–396CrossRefGoogle Scholar
  51. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198CrossRefGoogle Scholar
  52. Pinto AM, Moreira S, Gonçalves IC et al (2013) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B 104:229–238CrossRefGoogle Scholar
  53. Pinto AM, Gonçalves C, Gonçalves IC et al (2016) Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic acid)/graphene nanoplatelets composites. Eur Polym J 85:431–444CrossRefGoogle Scholar
  54. Pötschke P, Andres T, Villmow T et al (2010) Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70(2):343–349CrossRefGoogle Scholar
  55. Prajapati V, Sharma P, Banik A (2011) Carbon nanotubes and its applications. Int J Pharm Sci Res 2(5):1099–1107Google Scholar
  56. Prakash K, Ratnam CT, Sivakumar M (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595CrossRefGoogle Scholar
  57. Pramanik N, De J, Basu RK et al (2016) Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv 6(52):46116–46133CrossRefGoogle Scholar
  58. Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351CrossRefGoogle Scholar
  59. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  60. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  61. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652CrossRefGoogle Scholar
  62. Sadasivuni KK, Ponnamma D, Thomas S et al (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780CrossRefGoogle Scholar
  63. Salam MA, Makki MS, Abdelaal MY (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd 509(5):2582–2587CrossRefGoogle Scholar
  64. Sandrine T, Marius M, Philippe D (2017) Bionanocomposites based on PLA and halloysite nanotubes: from key properties to photooxidative degradation. Polym Degrad Stab 145:60–69CrossRefGoogle Scholar
  65. Sridhar V, Lee I, Chun HH et al (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polym Lett 7(4):320–328CrossRefGoogle Scholar
  66. Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)–graphene oxide nanocomposites. ACS Macro Lett 1(6):709–713CrossRefGoogle Scholar
  67. Torres E, Fombuena V, Vallés-Lluch A et al (2017) Improvement of mechanical and biological properties of holycaprolactone loaded with hydroxyapatite and halloysite nanotubes. Mater Sci Eng C 75:418–424CrossRefGoogle Scholar
  68. Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30(25):8000–8009CrossRefGoogle Scholar
  69. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46CrossRefGoogle Scholar
  70. Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509CrossRefGoogle Scholar
  71. Wang SF, Shen L, Zhang WD et al (2005a) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6(6):3067–3072CrossRefGoogle Scholar
  72. Wang S, Song C, Chen G et al (2005b) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87(1):69–76CrossRefGoogle Scholar
  73. Wang BJ, Zhang YJ, Zhang JQ et al (2013) Crystallization behavior, thermal and mechanical properties of PHBV/graphene nanosheet composites. Chin J Polym Sci 31(4):670–678MathSciNetCrossRefGoogle Scholar
  74. Wu D, Zhang Y, Zhang M et al (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 10(2):417–424CrossRefGoogle Scholar
  75. Wu D, Wu L, Zhou W et al (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48(4):479–489CrossRefGoogle Scholar
  76. Wu D, Lin D, Zhang J et al (2011) Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys 212(6):613–626CrossRefGoogle Scholar
  77. Wu D, Lv Q, Feng S et al (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387CrossRefGoogle Scholar
  78. Xu JZ, Chen T, Yang CL et al (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43(11):5000–5008CrossRefGoogle Scholar
  79. Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70(5):776–782CrossRefGoogle Scholar
  80. Zhang J, Yang H, Shen G et al (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46(7):1112–1114CrossRefGoogle Scholar
  81. Zhang D, Liu X, Wu G (2016) Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Compos Sci Technol 128:8–16CrossRefGoogle Scholar
  82. Zine R, Sinha M (2017) Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater Sci Eng C 80:129–134CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nilesh Kumar Shrivastava
    • 1
  • Muhammad Akmal Ahmad Saidi
    • 1
  • Norhayani Othman
    • 1
    Email author
  • Mohamad Zurina
    • 1
  • Azman Hassan
    • 1
    • 2
  1. 1.Faculty of Engineering, Department of Bioprocess and Polymer Engineering, School of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Centre for Advanced Composite MaterialsUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations