Polylactic Acid (PLA)-Based Nanocomposites: Processing and Properties

  • Ahmed Sharif
  • Sudipta Mondal
  • Md Enamul HoqueEmail author


Polylactic acid (PLA) is the most comprehensively explored biodegradable and renewable thermoplastic polyester. It has the capacity to substitute polymers from fossil fuel-based resources. However, certain properties such as uncontrolled degradation, poor thermal properties, gas permeability, and profound brittleness characteristic may restrict the wide-scale utilization of PLA. Consequently, nano-based reinforcements have been widely exploited to upgrade some of the shortcomings. With the advancement in the field of nanotechnology, PLA nanocomposites have emerged as an excellent material. These materials have a big potential for applications in food packaging, medical applications, and tissue cultures. This chapter mainly assesses the different types of nanocomposites from PLA in terms of reinforcing materials. The resultant composite structures are correlated for different processing methods with the quality and factors of dispersion of reinforcements.


PLA Nanocomposite Biodegradable Renewable Polyester Food packaging Medical applications 


  1. Albertsson AC, Karlsson S (1994) Chemistry and biochemistry of polymer biodegradation. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Blackie, Glasgow, p 7CrossRefGoogle Scholar
  2. Ali SAM, Doherty PJ, Williams DF (1994) The mechanisms of oxidative degradation of biomedical polymers by free radicals. J Appl Polym Sci 51(8):1389–1398CrossRefGoogle Scholar
  3. Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48(1):85–108CrossRefGoogle Scholar
  4. Anžlovar A, Kržan A, Žagar E (2018) Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arab J Chem 11(3):343–352CrossRefGoogle Scholar
  5. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102CrossRefGoogle Scholar
  6. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRefGoogle Scholar
  7. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8CrossRefGoogle Scholar
  8. Bergsma JE, Rozema FR, Bos RRM, Boering G, de Bruijn WC (2006) Late degradation tissue response to poly(l-lactide) bone plates and screws. In: The biomaterials: silver jubilee compendium, pp 101–107CrossRefGoogle Scholar
  9. Burg KJL, Holder WD, Culberson CR, Beiler RJ, Greene KG, Loebsack AB et al (1999) Parameters affecting cellular adhesion to polylactide films. J Biomater Sci Polym Ed 10(2):147–161CrossRefGoogle Scholar
  10. Bussiere PO, Therias S, Gardette JL, Murariu M, Dubois P, Baba M (2012) Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid). Phys Chem Chem Phys 14(35):12301–12308CrossRefGoogle Scholar
  11. Cai R, Kubota Y, Fujishima A (2003) Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J Catal 219(1):214–218CrossRefGoogle Scholar
  12. Carus M, Carrez D, Kaeb H, Venus J (2011). Level playing field for bio-based chemistry and materials. Nova Institute, pp 04–18Google Scholar
  13. Chen S, Feng J, Guo X, Hong J, Ding W (2005) One-step wet chemistry for preparation of magnetite nanorods. Mater Lett 59(8–9):985–988CrossRefGoogle Scholar
  14. Chen C, Lv G, Pan C, Song M, Wu C, Guo D et al (2007) Poly(lactic acid)(PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):L1CrossRefGoogle Scholar
  15. Chen BK, Shen CH, Chen SC, Chen AF (2010) Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 51(21):4667–4672CrossRefGoogle Scholar
  16. Chen BK, Shen CH, Chen AF (2012) Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate. Polym Bull 69(3):313–322CrossRefGoogle Scholar
  17. Chiang MF, Wu TM (2010) Synthesis and characterization of biodegradable poly(l-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 70(1):110–115CrossRefGoogle Scholar
  18. Chiu WM, Chang YA, Kuo HY, Lin MH, Wen HC (2008) A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J Appl Polym Sci 108(5):3024–3030CrossRefGoogle Scholar
  19. Chow TS (1978) Effect of particle shape at finite concentration on the elastic moduli of filled polymers. J Polym Sci Polym Phys Ed 16(6):959–965CrossRefGoogle Scholar
  20. Costa FR, Saphiannikova M, Wagenknecht U, Heinrich G (2007) Layered double hydroxide based polymer nanocomposites. In: Wax crystal control nanocomposites stimuli-responsive polymers. Springer, Berlin, pp 101–168Google Scholar
  21. Cumkur EA, Baouz T, Yilmazer U (2015) Poly(lactic acid)–layered silicate nanocomposites: the effects of modifier and compatibilizer on the morphology and mechanical properties. J Appl Polym Sci 132(38)CrossRefGoogle Scholar
  22. Dash S, Mishra S, Patel S, Mishra BK (2008) Organically modified silica: synthesis and applications due to its surface interaction with organic molecules. Adv Coll Interface Sci 140(2):77–94CrossRefGoogle Scholar
  23. Dhar P, Kumar A, Katiyar V (2016) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces 8(28):18393–18409CrossRefGoogle Scholar
  24. Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8(1):1–9CrossRefGoogle Scholar
  25. Dorgan JR, Lehermeier HJ, Palade LI, Cicero J (2001) Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. In: Macromolecular symposia, vol 175, no 1. WILEY‐VCH Verlag GmbH, Weinheim, pp 55–66CrossRefGoogle Scholar
  26. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRefGoogle Scholar
  27. Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 23(11):1587–1593CrossRefGoogle Scholar
  28. Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20(42):9297–9305CrossRefGoogle Scholar
  29. Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stab 95(6):1063–1076CrossRefGoogle Scholar
  30. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  31. Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046CrossRefGoogle Scholar
  32. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338CrossRefGoogle Scholar
  33. Gu SY, Zou CY, Zhou K, Ren J (2009) Structure-rheology responses of polylactide/calcium carbonate composites. J Appl Polym Sci 114(3):1648–1655CrossRefGoogle Scholar
  34. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRefGoogle Scholar
  35. Hiljanen-Vainio M, Varpomaa P, Seppälä J, Törmälä P (1996) Modification of poly(l-lactides) by blending: mechanical and hydrolytic behavior. Macromol Chem Phys 197(4):1503–1523CrossRefGoogle Scholar
  36. Hoque ME, Hutmacher DW, Feng W, Li S, Huang MH, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610CrossRefGoogle Scholar
  37. Hoque ME, Ye TJ, Yong LC, Dahlan KM (2013a) Sago starch-mixed low-density polyethylene (LDPE) biodegradable polymer: synthesis and characterization. J Mater Article ID 365380, 7 pages. Scholar
  38. Hoque MdE, Shehryar M, Nurul Islam KMD (2013b) Processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. J Mater Sci Eng 2(4):132Google Scholar
  39. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432CrossRefGoogle Scholar
  40. Hutmacher DW, Hoque ME, Wong YS (2008) Design, fabrication and physical characterization of scaffolds made from biodegradable synthetic polymers in combination with RP systems based on melt extrusion. In: Bidanda B, Bartolo P (eds) virtual prototyping & bio manufacturing in medical applications. Springer, USAGoogle Scholar
  41. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132CrossRefGoogle Scholar
  42. Incardona SD, Fambri L, Migliaresi C (1996) Poly-l-lactic acid braided fibres produced by melt spinning: characterization and in vitro degradation. J Mater Sci Mater Med 7(7):387–391CrossRefGoogle Scholar
  43. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106CrossRefGoogle Scholar
  44. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRefGoogle Scholar
  45. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym Degrad Stab 95(12):2563–2573CrossRefGoogle Scholar
  46. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays. J Appl Polym Sci 122(1):112–125CrossRefGoogle Scholar
  47. Kawakami Y, Kakihana Y, Miyazato A, Tateyama S, Hoque MA (2010) Polyhedral oligomeric silsesquioxanes with controlled structure: formation and application in new Si-based polymer systems. In: Silicon polymers. Springer, Berlin, pp 185–228CrossRefGoogle Scholar
  48. Kimura Y, Shirotani K, Yamane H, Kitao T (1988) Ring-opening polymerization of 3 (S)-[(benzyloxycarbonyl) methyl]-1, 4-dioxane-2, 5-dione: a new route to a poly(alpha-hydroxy acid) with pendant carboxyl groups. Macromolecules 21(11):3338–3340CrossRefGoogle Scholar
  49. Krikorian V, Pochan DJ (2004) Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules 37(17):6480–6491CrossRefGoogle Scholar
  50. Kumar V, Dev A, Gupta AP (2014) Studies of poly(lactic acid) based calcium carbonate nanocomposites. Compos B Eng 56:184–188CrossRefGoogle Scholar
  51. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696CrossRefGoogle Scholar
  52. Lagarón JM, Cabedo L (2014) Polylactide (PLA)/clay nano-biocomposites. Poly(lactic acid) science and technology: processing, properties, additives and applications, no 12, p 215Google Scholar
  53. Lai SM, Wu SH, Lin GG, Don TM (2014) Unusual mechanical properties of melt-blended poly(lactic acid)(PLA)/clay nanocomposites. Eur Polym J 52:193–206CrossRefGoogle Scholar
  54. Li Y, Chen C, Li J, Sun XS (2011) Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer 52(11):2367–2375CrossRefGoogle Scholar
  55. Li Y, Han C, Zhang X, Xu K, Bian J, Dong L (2014) Poly(l-lactide)/Poly(d-lactide)/clay nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. Polym Eng Sci 54(4):914–924CrossRefGoogle Scholar
  56. Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@ Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28CrossRefGoogle Scholar
  57. Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng 45(1):1646–1650CrossRefGoogle Scholar
  58. Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104(1):310–317CrossRefGoogle Scholar
  59. Linnemann B, Sri Harwoko M, Gries T (2003) Polylactide fibers (PLA). Chem Fibers Int 53(6):426–433Google Scholar
  60. Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized TiO2. Acta Mater 57(11):3182–3191CrossRefGoogle Scholar
  61. Luo Y, Cao Y, Guo G (2018) Effects of TiO2 nanoparticles on the photodegradation of poly (lactic acid). J Appl Polym Sci 135(30):46509CrossRefGoogle Scholar
  62. Malinowski R, Janczak K, Rytlewski P, Raszkowska-Kaczor A, Moraczewski K, Żuk T (2015) Influence of glass microspheres on selected properties of polylactide composites. Compos B Eng 76:13–19CrossRefGoogle Scholar
  63. Mandal S, Tichit D, Lerner DA, Marcotte N (2009) Azoic dye hosted in layered double hydroxide: physicochemical characterization of the intercalated materials. Langmuir 25(18):10980–10986CrossRefGoogle Scholar
  64. Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA (2009) Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer 50(15):3564–3574CrossRefGoogle Scholar
  65. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRefGoogle Scholar
  66. Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly (ε-caprolactone). Mater Lett 65(4):729–732CrossRefGoogle Scholar
  67. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME (2016) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806CrossRefGoogle Scholar
  68. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  69. Mu B, Tang J, Zhang L, Wang A (2017) Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye. Sci Rep 7(1):5347CrossRefGoogle Scholar
  70. Murariu M, Dechief AL, Bonnaud L, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95(5):889–900CrossRefGoogle Scholar
  71. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M et al (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12(5):1762–1771CrossRefGoogle Scholar
  72. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7–8):1293–1297CrossRefGoogle Scholar
  73. Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92(7):1255–1264CrossRefGoogle Scholar
  74. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501CrossRefGoogle Scholar
  75. Navarro MELBA, Ginebra MP, Planell JA, Barrias CC, Barbosa MA (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1(4):411–419CrossRefGoogle Scholar
  76. Nekhamanurak B, Patanathabutr P, Hongsriphan N (2012a) Thermal–mechanical property and fracture behaviour of plasticised PLA–CaCO3 nanocomposite. Plast Rubber Compos 41(4–5):175–179CrossRefGoogle Scholar
  77. Nekhamanurak YB, Patanathabutr P, Hongsriphan N (2012b) Mechanical properties of hydrophilicity modified CaCO3-poly(lactic acid) nanocomposite. Int J Appl Phys Math 2(2):98CrossRefGoogle Scholar
  78. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133MathSciNetCrossRefGoogle Scholar
  79. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRefGoogle Scholar
  80. Pal N, Dubey P, Gopinath P, Pal K (2017) Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int J Biol Macromol 95:94–105CrossRefGoogle Scholar
  81. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polymer J 49(11):3471–3482CrossRefGoogle Scholar
  82. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Coll Interface Sci 121(1–3):77–110CrossRefGoogle Scholar
  83. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Rulmont A, Dubois P (2005) (Plasticized) polylactide/(organo-) clay nanocomposites by in situ intercalative polymerization. Macromol Chem Phys 206(4):484–498CrossRefGoogle Scholar
  84. Prasad J, Singh AK, Shah J, Kotnala RK, Singh K (2018) Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness. Mater Res Express 5(5):055028CrossRefGoogle Scholar
  85. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRefGoogle Scholar
  86. Rasal, R. M., & Hirt, D. E. (2009). Toughness decrease of PLA‐PHBHHx blend films upon surface‐confined photopolymerization. J Biomed Mater Res Part A Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 88(4):1079–1086CrossRefGoogle Scholar
  87. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356CrossRefGoogle Scholar
  88. Ratner BD (1995) Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10(9–10):797–804CrossRefGoogle Scholar
  89. Razzaq MY, Behl M, Lendlein A (2012) Magnetic memory effect of nanocomposites. Adv Func Mater 22(1):184–191CrossRefGoogle Scholar
  90. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677CrossRefGoogle Scholar
  91. Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497:1–13CrossRefGoogle Scholar
  92. Sawyer DJ (2003) Bioprocessing–no longer a field of dreams. In: Macromolecular symposia, vol 201, no 1. WILEY‐VCH Verlag, Weinheim, pp 271–282MathSciNetCrossRefGoogle Scholar
  93. Schugens CH, Grandfils CH, Jérôme R, Teyssie PH, Delree P, Martin D et al (1995). Preparation of a macroporous biodegradable polylactide implant for neuronal transplantation. J Biomed Mater Res 29(11):1349–1362CrossRefGoogle Scholar
  94. Shabanian M, Khoobi M, Hemati F, Khonakdar HA, Wagenknecht U, Shafiee A (2015) New PLA/PEI-functionalized Fe3O4 nanocomposite: preparation and characterization. J Ind Eng Chem 24:211–218CrossRefGoogle Scholar
  95. Shi N, Cai J, Dou Q (2013) Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites. In: Advanced materials research, vol 602. Trans Tech Publications, Switzerland, pp 768–771Google Scholar
  96. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096CrossRefGoogle Scholar
  97. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos B Eng 69:342–349CrossRefGoogle Scholar
  98. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192CrossRefGoogle Scholar
  99. Taccola S, Desii A, Pensabene V, Fujie T, Saito A, Takeoka S et al (2011) Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles. Langmuir 27(9):5589–5595CrossRefGoogle Scholar
  100. Tehrani MA, Akbari A, Majumder M (2014) Polylactic acid (PLA) layered silicate nanocomposites. In: Handbook of polymernanocomposites. Processing, performance and application. Springer, Berlin, pp 53–67Google Scholar
  101. Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464CrossRefGoogle Scholar
  102. Vallet‐Regí M, Granado S, Arcos D, Gordo M, Cabanas MV, Ragel CV et al (1998) Preparation, characterization, and in vitro release of ibuprofen from Al2O3/PLA/PMMA composites. J Biomed Mater Res Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater 39(3):423–428CrossRefGoogle Scholar
  103. Vink ET, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419CrossRefGoogle Scholar
  104. Vink ET, Glassner DA, Kolstad JJ, Wooley RJ, O’Connor RP (2007) The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3(1):58–81CrossRefGoogle Scholar
  105. Wen X, Zhang K, Wang Y, Han L, Han C, Zhang H et al (2011) Study of the thermal stabilization mechanism of biodegradable poly(l‐lactide)/silica nanocomposites. Polym Int 60(2):202–210CrossRefGoogle Scholar
  106. Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49(1):25–63. Scholar
  107. Xia Y, Fang J, Li P, Zhang B, Yao H, Chen J et al (2017) Solution-processed highly superparamagnetic and conductive PEDOT: PSS/Fe3O4 nanocomposite films with high transparency and high mechanical flexibility. ACS Appl Mater Interfaces 9(22):19001–19010CrossRefGoogle Scholar
  108. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48(6):1688–1694CrossRefGoogle Scholar
  109. Zheng X, Zhou S, Xiao Y, Yu X, Li X, Wu P (2009) Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf B 71(1):67–72CrossRefGoogle Scholar
  110. Zhu A, Diao H, Rong Q, Cai A (2010) Preparation and properties of polylactide–silica nanocomposites. J Appl Polym Sci 116(5):2866–2873Google Scholar
  111. Zhuang W, Liu J, Zhang JH, Hu BX, Shen J (2009) Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization. Polym Compos 30(8):1074–1080CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Sharif
    • 1
  • Sudipta Mondal
    • 1
  • Md Enamul Hoque
    • 2
    Email author
  1. 1.Department of Materials and Metallurgical EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh
  2. 2.Department of Biomedical EngineeringMilitary Institute of Science and Technology (MIST)DhakaBangladesh

Personalised recommendations