SiGe Photodetectors

  • Horst ZimmermannEmail author
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 13)


SiGe alloys allow the integration of infrared detectors on Si. The addition of Ge to Si also increases the absorption coefficient in the spectral range from 400–1000 nm, allows a reduction of the detector thickness, and, therefore, enables faster detectors than with pure Si. To exploit the advantages of SiGe alloys for Si-based photodetectors, however, the problem associated with the lattice constant mismatch has to be understood. Subsequently, this chapter describes an example of a SiGe OEIC.


  1. 1.
    E. Kasper, H.J. Herzog, H. Kibbel, A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl. Phys. 8, 199–205 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    H.M. Manasevit, I.S. Gergis, A.B. Jones, The properties of Si/Si\(_{1-x}\)Ge\(_x\) films grown on Si substrates by chemical vapor deposition. J. Electron. Mater. 12(4), 637–651 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Bean, T.T. Sheng, L.C. Feldman, A.T. Fiory, R.T. Lynch, Pseudomorphic growth of Ge\(_x\)Si\(_{1-x}\) on silicon by molecular beam epitaxy. Appl. Phys. Lett. 44(1), 102–104 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    R. People, J.C. Bean, D.V. Lang, A.M. Sergent, H.L. Stormer, K.W. Wecht, R.T. Lynch, K. Baldwin, Modulation doping in Ge\(_x\)Si\(_{1-x}\)/Si strained layer heterostructures. Appl. Phys. Lett. 45(11), 1231–1233 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    R. People, Indirect band gap of coherently strained Ge\(_x\)Si\(_{1-x}\) bulk alloys on \(<\)001\(>\) silicon substrates. Phys. Rev. B 32(2), 1405–1408 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    D.C. Ahlgren, M. Gilbert, D. Greenberg, S.J. Jeng, J. Malinowski, D. Nguyen-Ngoc, K. Schonenberg, K. Stein, R. Groves, K. Walter, G. Hueckel, D. Colavito, G. Freeman, D. Sunderland, D.L. Harame, B. Meyerson, Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace, in IEEE International Electron Device Meeting (Washington, D.C., 1996), pp. 859–862Google Scholar
  7. 7.
    S. Subbanna, D. Ahlgren, D. Harame, B. Meyerson, How SiGe evolved into a manufacturable semiconductor production process, in IEEE International Solid-State Circuits Conference (1999), pp. 66–67Google Scholar
  8. 8.
    D.J. Paul, Silicon-germanium strained layer materials in microelectronics. Adv. Mater. 11(3), 191–204 (1999)CrossRefGoogle Scholar
  9. 9.
    S. Luryi, T.P. Pearsall, H. Tempkin, J.C. Bean, Waveguide infrared photodetectors on a silicon chip. IEEE Electron Device Lett. 7(2), 104–107 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    A. Splett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, H.-J. Herzog, H. Presting, IEEE Photonics Technol. Lett. 6, 59 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    S.B. Samavedam, M.T. Currie, T.A. Langdo, E.A. Fitzgerald, High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers. Appl. Phys. Lett. 73(15), 2125–2127 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    T.L. Lin, J. Maserjian, Characterization of wafer bonded photodetectors fabricated using various annealing temperatures and ambients. Appl. Phys. Lett. 57(14), 1422–1424 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    T.L. Lin, E.W. Jones, A. Ksendzov, S.M. Dejewski, R.W. Fathauer, T.N. Krabach, J. Maserjian, A novel Si-based LWIR detector: the SiGe/Si heterojunction internal photoemission detector, in IEDM Digest Technical Papers (1990), pp. 641–644Google Scholar
  14. 14.
    R.P.G. Karunasiri, J.S. Park, K.L. Wang, Si\(_{1-x}\)Ge\(_x\)/Si multiple quantum well infrared detector. Appl. Phys. Lett. 59(20), 2588–2590 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Soref, Silicon-based photonic devices, in ISSCC (1995), pp. 66–67Google Scholar
  16. 16.
    Q. Mi, X. Xiao, J.C. Sturm, L. Lenchyshyn, M.L.W. Thewalt, Room-temperature 1.3 \(\upmu \)m electroluminescence from strained Si\(_{1-x}\)Ge\(_x\)/Si quantum wells. Appl. Phys. Lett. 60(25), 3177–3179 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    H. Presting, T. Zinke, A. Splett, H. Kibbel, M. Jaros, Appl. Phys. Lett. 69, 2376 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Soref, Silicon-based optoelectronics. Proc. IEEE 81(12), 1687–1706 (1993)CrossRefGoogle Scholar
  19. 19.
    G. Abstreiter, Engineering the future of electronics. Phys. World 5, 36–39 (1992)CrossRefGoogle Scholar
  20. 20.
    J.C. Sturm, Advanced column-IV epitaxial materials for silicon-based optoelectronics, MRS Bull. 60–64 (1998)CrossRefGoogle Scholar
  21. 21.
    D.C. Houghton, Strain relaxation kinetics in Si\(_{1-x}\)Ge\(_x\)/Si heterostructures. J. Appl. Phys. 70(4), 2136–2151 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    D.C. Houghton, C. Gibbings, C. Tuppen, M. Lyons, M. Halliwell, Equilibrium critical thickness for Si\(_{1-x}\)Ge\(_x\) strained layers on (100) Si. Appl. Phys. Lett. 56(5), 460–462 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    F.K. LeGoues, B.S. Meyerson, J. Morar, Anomalous strain relaxation in SiGe thin films and superlattices. Phys. Rev. Lett. 66(22), 2903–2906 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    Y.J. Mii, Y.H. Xie, E.A. Fitzgerald, D. Monroe, F.A. Thiel, B.E. Weir, L.C. Feldman, Extremely high electron mobility in Si/Ge\(_x\)Si\(_{1-x}\) structures grown by molecular beam epitaxy. Appl. Phys. Lett. 59(13), 1611–1613 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    K. Ismail, S. Rishton, J.O. Chu, K. Chan, B.S. Meyerson, High-performance Si/SiGe n-type modulation-doped transistors. IEEE Electron Device Lett. 14(7), 348–350 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kissinger, T. Morgenstern, G. Morgenstern, H. Richter, Stepwise equilibrated graded Ge\(_x\)Si\(_{1-x}\) buffer with very low threading dislocation density on Si(001). Appl. Phys. Lett. 66(16), 2083–2085 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    E.J. Prinz, P.M. Garone, P.V. Schwartz, X. Xiao, J.C. Sturm, The effects of base dopant outdiffusion and undoped Si\(_{1-x}\)Ge\(_x\) junction spacer layers in Si/Si\(_{1-x}\)Ge\(_x\)/Si heterojunction bipolar transistors. IEEE Electron Device Lett. 12(2), 42–44 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Slotboom, B. Streutker, A. Pruijimboom, D.J. Gravesteijn, Parasitic energy barriers in SiGe HBTs. IEEE Electron Device Lett. 12(9), 486–488 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    E.D. Palik, Handbook of Optical Constants of Solids II (Academic Press Inc, Boston, 1991), pp. 607–636Google Scholar
  30. 30.
    T. Tashiro, T. Tatsumi, M. Sugiyama, T. Hashimoto, T. Morikawa, A selective epitaxial SiGe/Si planar photodetector for Si-based OEIC’s. IEEE Trans. Electron Devices 44(4), 545–550 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    R.T. Carline, D.A.O. Hope, V. Nayar, D.J. Robbins, M.B. Stanaway, A vertical cavity longwave infrared SiGe/Si photodetector using a buried silicide mirror, in IEEE International Electron Device Meeting (Washington, D.C., 1997), pp. 891–894Google Scholar
  32. 32.
    A. Schüppen, U. Erben, A. Gruhle, H. Kibbel, H. Schumacher, U. König, Enhanced SiGe heterojunction bipolar transistors with 160 GHz-\(f_{\text{max}}\), in IEDM Digest Technical Papers (1995), pp. 743–746Google Scholar
  33. 33.
    J.-S. Rieh, D. Klotzkin, O. Qasaimeh, L.-H. Lu, K. Yang, L.P.B. Katehi, P. Bhattacharya, E.T. Croke, Monolithically integrated SiGe-Si PIN-HBT front-end photoreceiver. IEEE Photonics Technol. Lett. 10(3), 415–417 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EMCETechnische Universität WienViennaAustria

Personalised recommendations