Advertisement

Molding a Shape-Memory Polymer with Programmable Matter

  • Florian PescherEmail author
  • Benoît Piranda
  • Stephane Delalande
  • Julien Bourgeois
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)

Abstract

The design phase of a car development is a long and tedious process requiring a lot of trials and errors. In this paper, we introduce a new concept aiming at making this process easier and more interactive. Our solution mixes self-reconfigurable autonomous robots forming programmable matter and a shape-memory polymer surface that produces an interactive model of the desired object. We propose a global algorithm to manage the interactions with the users and the self-reconfiguration of programmable matter to mold the polymer surface. We detail the technical aspects used to define the new shape of the programmable matter to better approach a goal surface described by a Non-Uniform Rational Basis Splines (NURBS) using a dichotomy algorithm.

Notes

Acknowledgements

This work was partially supported by the ANR (ANR-16-CE33-0022-02), the French Investissements d’Avenir program, ISITE-BFC project (ANR-15-IDEX-03), Labex ACTION program (ANR-11-LABX-01-01) and the Mobilitech project.

References

  1. 1.
    Behl, M., Lendlein, A.: Actively moving polymers. Soft Matter 3(1), 58–67 (2007)CrossRefGoogle Scholar
  2. 2.
    Bourgeois, J., Piranda, B., Naz, A., Boillot, N., Mabed, H., Dhoutaut, D., Knychala Tucci, T., Lakhlef, H.: Programmable matter as a cyber-physical conjugation. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016). IEEE, Oct 2016. https://publiweb.femto-st.fr/tntnet/entries/13257/documents/author/data
  3. 3.
    Han, X.J., Dong, Z.Q., Fan, M.M., Liu, Y., Li, J.H., Wang, Y.F., Yuan, Q.J., Li, B.J., Zhang, S.: pH-induced shape-memory polymers. Macromol. Rapid Commun. 33(12), 1055–1060 (2012)CrossRefGoogle Scholar
  4. 4.
    Hu, J., Zhu, Y., Huang, H., Lu, J.: Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37(12), 1720–1763 (2012)CrossRefGoogle Scholar
  5. 5.
    Lankinen, J.: 3D Surface Modeling Using Point Clouds (2009)Google Scholar
  6. 6.
    Lendlein, A., Jiang, H., Jünger, O., Langer, R.: Light-induced shape-memory polymers. Nature 434(7035), 879 (2005)CrossRefGoogle Scholar
  7. 7.
    Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002)CrossRefGoogle Scholar
  8. 8.
    Liu, C., Qin, H., Mather, P.: Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)CrossRefGoogle Scholar
  9. 9.
    Mather, P.T., Luo, X., Rousseau, I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)CrossRefGoogle Scholar
  10. 10.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York, NY, USA (1996)Google Scholar
  11. 11.
    Piranda, B.: VisibleSim: your simulator for programmable matter. In: Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 16271), July 2016Google Scholar
  12. 12.
    Piranda, B., Bourgeois, J.: Geometrical study of a quasi-spherical module for building programmable matter. In: DARS 2016, 13th International Symposium on Distributed Autonomous Robotic Systems, London, United Kingdom, Nov 2016Google Scholar
  13. 13.
    Prasantha, H., Shashidhara, H., Balasubramanya Murthy, K.: Comparative analysis of different interpolation schemes in image processing. In: International Conference on Advanced Communication Systems (ICACS), India, pp. 17–24 (2007)Google Scholar
  14. 14.
    Saniee, K.: A simple expression for multivariate Lagrange interpolation. In: SIAM Undergraduate Research Online (SIURO), July 2008CrossRefGoogle Scholar
  15. 15.
    Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)CrossRefGoogle Scholar
  16. 16.
    Tucci, T.K., Piranda, B., Bourgeois, J.: Coding 3D scene for distributed self-reconfiguration algorithms. In: 32nd ACM SIGAPP Symposium on Applied Computing (SAC17), pp. 256–261, Marrakesh, Morocco. ACM, 6–9 Apr 2017Google Scholar
  17. 17.
    Zhao, Q., Zou, W., Luo, Y., Xie, T.: Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2(1), e1501297 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Florian Pescher
    • 1
    Email author
  • Benoît Piranda
    • 1
  • Stephane Delalande
    • 2
  • Julien Bourgeois
    • 1
  1. 1.FEMTO-ST InstituteUniv. Bourgogne Franche-Comté, CNRSMontbéliardFrance
  2. 2.PSA Groupe, Scientific DirectionVélizy-VillacoublayFrance

Personalised recommendations