Advertisement

Resilient Backbones in Hexagonal Robot Formations

  • David SaldañaEmail author
  • Luis Guerrero-Bonilla
  • Vijay Kumar
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)

Abstract

Achieving consensus in distributed robot networks is a challenging task when the network contains non-cooperative robots. The conditions of robustness in communication networks are very restrictive and difficult to adapt to robot networks where the communication links are based on proximity. In this paper, we present a new topology network that is suitable for triangular lattices. We introduce sufficient conditions on hexagonal formations to offer resilience up to F non-cooperative robots. Using our framework, a resilient backbone can be designed to connect multiple points or to cover a given area while maintaining a robust communication network. We show theoretical guarantees for our proposed hexagonal formation and its variations. Different scenarios in simulations are presented to validate our approach.

Notes

Acknowledgements

We gratefully acknowledge the support of ARL DCIST CRA W911NF-17-2-0181. N00014-14-1-0510, NSF grant CNS-1521617, and N00014-15-1-2115.

References

  1. 1.
    Fujibayashi, K., Murata, S., Sugawara, K., Yamamura, M.: Self-organizing formation algorithm for active elements. In: 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings, pp. 416–421 (2002)Google Scholar
  2. 2.
    Guerrero-Bonilla, L., Prorok, A., Kumar, V.: Formations for resilient robot teams. IEEE Robot. Autom. Lett. 2(2), 841–848 (2017)CrossRefGoogle Scholar
  3. 3.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 2953–2958 (2002)Google Scholar
  4. 4.
    LeBlanc, H.J., Koutsoukos, X.D.: Algorithms for determining network robustness. In: Proceedings of the 2nd ACM International Conference on High Confidence Networked Systems, pp. 57–64. ACM (2013)Google Scholar
  5. 5.
    LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Resilient asymptotic consensus in robust networks. IEEE J. Sel. Areas Commun. 31(4), 766–781 (2013)CrossRefGoogle Scholar
  6. 6.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  8. 8.
    Park, H., Hutchinson, S.: An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing range. 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 358–365. IEEE (2016)Google Scholar
  9. 9.
    Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: American Control Conference (ACC), pp. 1859–1864. IEEE (2005)Google Scholar
  10. 10.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  11. 11.
    Saber, R.O., Murray, R.M.: Consensus protocols for networks of dynamic agents. In: Proceedings of the 2003 American Control Conference, 2003, vol. 2, pp. 951–956 (2003)Google Scholar
  12. 12.
    Saldaña, D., Prorok, A., Campos, M.F.M., Kumar, V.: Triangular Networks for Resilient Formations, pp. 147–159. Springer International Publishing, Berlin (2018)CrossRefGoogle Scholar
  13. 13.
    Saulnier, K., Saldaña, D., Prorok, A., Pappas, G.J., Kumar, V.: Resilient flocking for mobile robot teams. IEEE Robot. Autom. Lett. 2(2), 1039–1046 (2017)CrossRefGoogle Scholar
  14. 14.
    Shahrivar, E.M., Pirani, M., Sundaram, S.: Robustness and algebraic connectivity of random interdependent networks. CoRR. arXiv:1508.03650 (2015)
  15. 15.
    Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally bounded adversaries. Am. Control Conf. ACC, 5855–5861 (2012)Google Scholar
  16. 16.
    Zhang, H., Sundaram, S.: Robustness of complex networks with implications for consensus and contagion. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 3426–3432. IEEE (2012)Google Scholar
  17. 17.
    Zhang, H., Fata, E., Sundaram, S.: A notion of robustness in complex networks. IEEE Trans. Control Netw. Syst. 2(3)(11–12), 310–320 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Saldaña
    • 1
    Email author
  • Luis Guerrero-Bonilla
    • 1
  • Vijay Kumar
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations