Advertisement

On Sharing Workload in Desktop Grids

  • Ilya ChernovEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

We consider two optimization problems of trade-off between risk of not getting an answer (due to failures or errors) and precision or accuracy in Desktop Grid computing. Quite simple models are general enough to be applicable for optimizing real systems. We support the made assumptions by statistics collected in a Desktop Grid computing project.

Keywords

Optimal work share Distributed computing Desktop Grid 

Notes

Acknowledgements

The research was supported by the Russian Foundation of Basic Research, projects 18-07-00628, 16-07-00622.

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations. Int. J. High Perf. Comput. Appl. 15(3), 200–222 (2001)CrossRefGoogle Scholar
  2. 2.
    Sarmenta, L.F., Hirano, S.: Bayanihan: building and studying web-based volunteer computing systems using Java. Future Gener. Comput. Syst. 15(5), 675–686 (1999)CrossRefGoogle Scholar
  3. 3.
    Kondo, D., Chien, A., Casanova, H.: Scheduling task parallel applications for rapid turnaround on enterprise desktop grids. J. Grid Comput. 5(4), 379–405 (2007).  https://doi.org/10.1007/s10723-007-9063-yCrossRefGoogle Scholar
  4. 4.
    Ivashko, E.: Enterprise desktop grids. In: Proceedings of the Second International Conference BOINC-Based High Performance Computing: Fundamental Research and Development, BOINC:FAST 2015, Petrozavodsk, pp. 16–21 (2015)Google Scholar
  5. 5.
    Kwan, S., Muppala, J.: Bag-of-tasks applications scheduling on volunteer desktop grids with adaptive information dissemination. In: IEEE 35th Conference on Local Computer Networks (LCN), pp. 544–551. IEEE (2010)Google Scholar
  6. 6.
    Rius, J., Cores, F., Solsona, F.: Cooperative scheduling mechanism for large-scale peer-to-peer computing systems. J. Netw. Comput. Appl. 36(6), 1620–1631 (2013).  https://doi.org/10.1016/j.jnca.2013.01.002CrossRefGoogle Scholar
  7. 7.
    Anderson, D., Reed, K.: Celebrating diversity in volunteer computing. In: 42nd Hawaii International Conference on System Sciences, pp. 1–8. IEEE (2009)Google Scholar
  8. 8.
    Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010).  https://doi.org/10.1016/j.future.2009.11.005CrossRefGoogle Scholar
  9. 9.
    Casanova, H., Dufossé, F., Robert, Y., Vivien, F.: Scheduling parallel iterative applications on volatile resources. In: IEEE International Parallel & Distributed Processing Symposium, pp. 1012–1023. IEEE (2011).  https://doi.org/10.1109/IPDPS.2011.97
  10. 10.
    Chmaj, G., Walkowiak, K., Tarnawski, M., Kucharzak, M.: Heuristic algorithms for optimization of task allocation and result distribution in peer-to-peer computing systems. Int. J. Appl. Math. Comput. Sci. 22(3), 733–748 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kianpisheh, S., Kargahi, M., Charkari, N.M.: Resource availability prediction in distributed systems: an approach for modeling non-stationary transition probabilities. IEEE Trans. Parallel Distrib. Syst. 28(8), 2357–2372 (2018).  https://doi.org/10.1109/TPDS.2017.2659746CrossRefGoogle Scholar
  12. 12.
    Durrani, N., Shamsi, J.: Volunteer computing: requirements, challenges, and solutions. J. Netw. Comput. Appl. 39, 369–380 (2014).  https://doi.org/10.1016/j.jnca.2013.07.006CrossRefGoogle Scholar
  13. 13.
    Choi, S., Kim, H., Byun, E., Hwan, C.: A taxonomy of desktop grid systems focusing on scheduling. Technical report KU-CSE-2006-1120-02, Department of Computer Science and Engineering, Korea University (2006)Google Scholar
  14. 14.
    Estrada, T., Taufer, : M.: Challenges in designing scheduling policies in volunteer computing. In: Cérin, C., Fedak, G. (eds.) Desktop Grid Computing, pp. 167–190. CRC Press (2012)Google Scholar
  15. 15.
    Khan, M., Mahmood, T., Hyder, S.: Scheduling in desktop grid systems: theoretical evaluation of policies and frameworks. Int. J. Adv. Comput. Sci. Appl. 8(1), 119–127 (2017)Google Scholar
  16. 16.
    Mazalov, V.V., Nikitina, N.N., Ivashko, E.E.: Task scheduling in a desktop grid to minimize the server load. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 273–278. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_27CrossRefGoogle Scholar
  17. 17.
    Yu, J., Wang, X., Luo, Y.: Deceptive detection and security reinforcement in grid computing. In: 5th International Conference on Intelligent Networking and Collaborative Systems, pp. 146–152 (2013)Google Scholar
  18. 18.
    Bazinet, A., Cummings, M.: Subdividing long-running, variable-length analyses into short, fixed-length BOINC workunits. J. Grid Comput. 14, 429–441 (2016).  https://doi.org/10.1007/s10723-015-9348-5CrossRefGoogle Scholar
  19. 19.
    Chernov, I., Nikitina, N.: Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 258–267. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_25CrossRefGoogle Scholar
  20. 20.
    Manzyuk, M., Nikitina, N., Vatutin, E.: Employment of distributed computing to search and explore orthogonal diagonal latin squares of rank 9. In: Proceedings of the XI All-Russian Research and Practice Conference “Digital technologies in education, science, society”, Petrozavodsk, pp. 97–100 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Applied Mathematical Research, Karelian Research Center of the Russian Academy of SciencesPetrozavodskRussia

Personalised recommendations