Advertisement

Comparison of Dimensionality Reduction Schemes for Parallel Global Optimization Algorithms

  • Konstantin Barkalov
  • Vladislav SovrasovEmail author
  • Ilya Lebedev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

This work considers a parallel algorithms for solving multi-extremal optimization problems. Algorithms are developed within the framework of the information-statistical approach and implemented in a parallel solver Globalizer. The optimization problem is solved by reducing the multidimensional problem to a set of joint one-dimensional problems that are solved in parallel. Five types of Peano-type space-filling curves are employed to reduce dimension. The results of computational experiments carried out on several hundred test problems are discussed.

Keywords

Global optimization Dimension reduction Parallel algorithms Multidimensional multiextremal optimization Global search algorithms Parallel computations 

Notes

Acknowledgements

The study was supported by the Russian Science Foundation, project No 16-11-10150.

References

  1. 1.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-8042-6CrossRefzbMATHGoogle Scholar
  2. 2.
    Strongin, R.G.: Numerical Methods in Multi-Extremal Problems (Information-Statistical Algorithms). Nauka, Moscow (1978. in Russian)Google Scholar
  3. 3.
    Strongin, R.G.: Algorithms for multi-extremal mathematical programming problems employing a set of joint space-filling curves. J. Glob. Optim. 2, 357–378 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Computations for Global Optimization Problems. Moscow State University, Moscow (2013). (in Russian)Google Scholar
  5. 5.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). (2nd edn. 2013, 3rd edn. 2014)CrossRefGoogle Scholar
  6. 6.
    Goryachih, A.: A class of smooth modification of space-filling curves for global optimization problems. In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev, O. (eds.) NET 2016. PROMS, vol. 197, pp. 57–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56829-4_5
  7. 7.
    Strongin, R.G.: Parallel multi-extremal optimization using a set of evolvents. Comput. Math. Math. Phys. 31(8), 37–46 (1991)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Strongin, R.G., Gergel, V.P., Barkalov, K.A.: Parallel methods for global optimization problem solving. J. Instrum. Eng. 52, 25–33 (2009). (in Russian)Google Scholar
  9. 9.
    Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stat. Optim. 7, 198–206 (1978). (in Russian)zbMATHGoogle Scholar
  11. 11.
    Gergel, V.P., Barkalov, K.A., Sysoyev, A.V.: Globalizer: a novel supercomputer software system for solving time-consuming global optimization problems. Numer. Algebra Control Optim. 8(1), 47–62 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, 2nd edn, pp. 725–735. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-0-387-74759-0CrossRefGoogle Scholar
  15. 15.
    Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Proc. Comput. Sci. 66, 53–62 (2015)CrossRefGoogle Scholar
  18. 18.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_49CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantin Barkalov
    • 1
  • Vladislav Sovrasov
    • 1
    Email author
  • Ilya Lebedev
    • 1
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations