Advertisement

Batch of Tasks Completion Time Estimation in a Desktop Grid

  • Evgeny IvashkoEmail author
  • Valentina Litovchenko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

This paper describes a statistical approach used to estimate batch of tasks completion time in a Desktop Grid. The statistical approach based on Holt model is presented. The results of numerical experiments based on statistics of RakeSearch and LHC@home volunteer computing projects are given.

Keywords

Desktop Grid BOINC High-throughput computing Holt model Confidence interval Completion time estimation 

Notes

Acknowledgements

This work was supported by the Russian Foundation of Basic Research, projects 18-07-00628, 18-37-00094 and 16-47-100168.

References

  1. 1.
    Anderson, D.P., Christensen, C., Allen, B.: Designing a runtime system for volunteer computing. In: SC 2006 Conference, Proceedings of the ACM/IEEE, p. 33, November 2006.  https://doi.org/10.1109/SC.2006.24
  2. 2.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings of Fifth IEEE/ACM International Workshop on Grid Computing 2004, pp. 4–10. IEEE (2004)Google Scholar
  3. 3.
    Anderson, D.: Emulating volunteer computing scheduling policies. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pp. 1839–1846. IEEE (2011)Google Scholar
  4. 4.
    Barranco, J., et al.: Lhc@home: a BOINC-based volunteer computing infrastructure for physics studies at CERN. Open Eng. 7(1), 379–393 (2017).  https://doi.org/10.1515/eng-2017-0042CrossRefGoogle Scholar
  5. 5.
    Bazinet, A.L., Cummings, M.P.: Computing the tree of life: leveraging the power of desktop and service grids. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 1896–1902, May 2011.  https://doi.org/10.1109/IPDPS.2011.344
  6. 6.
    Beaumont, O., et al.: Towards Scalable, Accurate, and Usable Simulations of Distributed Applications and Systems. Research report rr-7761, Institut National de Recherche en Informatique et en Automatique (2011)Google Scholar
  7. 7.
    Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002).  https://doi.org/10.1007/b97391CrossRefzbMATHGoogle Scholar
  8. 8.
    Estrada, T., Taufer, M.: Challenges in designing scheduling policies involunteer computing. In: Cérin, C., Fedak, G. (eds.) Desktop Grid Computing, pp. 167–190. CRC Press (2012)Google Scholar
  9. 9.
    Estrada, T., Taufer, M., Anderson, D.: Performance prediction and analysis of BOINC projects: an empirical study with EmBOINC. J. Grid Comput. 7(4), 537–554 (2009)CrossRefGoogle Scholar
  10. 10.
    Estrada, T., Taufer, M., Reed, K., Anderson, D.: EmBOINC: an emulator for performance analysis of BOINC projects. In: IEEE International Symposium on Parallel & Distributed Processing 2009. IPDPS 2009, pp. 1–8. IEEE (2009)Google Scholar
  11. 11.
    Estrada, T., Taufer, M., Reed, K.: Modeling job lifespan delays in volunteer computing projects. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009, pp. 331–338. IEEE Computer Society, Washington (2009).  https://doi.org/10.1109/CCGRID.2009.69
  12. 12.
    Hellinckx, P., Verboven, S., Arickx, F., Broeckhove, J.: Predicting parameter sweep jobs: from simulation to grid implementation. In: 2009 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 402–408, March 2009.  https://doi.org/10.1109/CISIS.2009.86
  13. 13.
    Hellinckx, P., Verboven, S., Arickx, F., Broeckhove, J.: Runtime Prediction in Desktop Grid Scheduling, vol. 1, January 2009Google Scholar
  14. 14.
    Khan, M., Mahmood, T., Hyder, S.: Scheduling in desktop grid systems: theoretical evaluation of policies and frameworks. Int. J. Adv. Comput. Sci. Appl. 8(1), 119–127 (2017)Google Scholar
  15. 15.
    Kolokoltsev, Y., Ivashko, E., Gershenson, C.: Improving “tail” computations in a boinc-based desktop grid. Open Eng. 7(1), 371–378 (2017)CrossRefGoogle Scholar
  16. 16.
    Manzyuk, M., Nikitina, N., Vatutin, E.: Employment of distributed computing to search and explore orthogonal diagonal Latin squares of rank 9. In: Proceedings of the XI All-Russian Research and Practice Conference “Digital Techologies in Education, Science, Society” (2017)Google Scholar
  17. 17.
    Reynolds, C.J., et al.: Scientific workflow makespan reduction through cloud augmented desktop grids. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 18–23, November 2011.  https://doi.org/10.1109/CloudCom.2011.13
  18. 18.
    Taufer, M., Kerstens, A., Estrada, T., Flores, D., Teller, P.: SimBA: a discrete event simulator for performance prediction of volunteer computing projects. In: 21st International Workshop on Principles of Advanced and Distributed Simulation, vol. 7, pp. 189–197 (2007)Google Scholar
  19. 19.
    Villela, D.: Minimizing the average completion time for concurrent grid applications. J. Grid Comput. 8(1), 47–59 (2010).  https://doi.org/10.1007/s10723-009-9119-2CrossRefGoogle Scholar
  20. 20.
    Wu, W., Chen, G., Kan, W., Anderson, D., Grey, F.: Harness public computing resources for protein structure prediction computing. In: The International Symposium on Grids and Clouds (ISGC), vol. 2013 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Applied Mathematical ResearchKarelian Research Centre of Russian Academy of SciencesPetrozavodskRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations