Advertisement

Adaptive Scheduling for Adjusting Retrieval Process in BOINC-Based Virtual Screening

  • Natalia NikitinaEmail author
  • Evgeny Ivashko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

This work describes BOINC-based Desktop Grid implementation of adaptive task scheduling algorithm for virtual drug screening. The algorithm bases on a game-theoretical mathematical model where computing nodes act as players. The model allows to adjust the balance between the results retrieval rate and the search space coverage. We present the developed scheduling algorithm for BOINC-based Desktop Grid and evaluate its performance by simulations. Experimental analysis shows that the proposed scheduling algorithm allows to adjust the results retrieval rate and the search space coverage in a flexible way so as to reach the maximal efficiency of a BOINC-based Desktop Grid.

Keywords

Desktop grid BOINC Scheduling Virtual screening Game theory Congestion game 

Notes

Acknowledgements

This work was supported by the Russian Foundation of Basic Research, projects 18-07-00628 and 18-37-00094.

References

  1. 1.
    Afanasiev, A.P., Bychkov, I.V., Manzyuk, M.O., Posypkin, M.A., Semenov, A.A., Zaikin, O.S.: Technology for integrating idle computing cluster resources into volunteer computing projects. In: 5th International Workshop on Computer Science and Engineering: Information Processing and Control Engineering, WCSE 2015-IPCE, pp. 109–114 (2015)Google Scholar
  2. 2.
    Kovács, J., Marosi, A., Visegrádi, Á., Farkas, Z., Kacsuk, P., Lovas, R.: Boosting gLite with cloud augmented volunteer computing. Future Gener. Comput. Syst. 43–44, 12–23 (2015).  https://doi.org/10.1016/j.future.2014.10.005CrossRefGoogle Scholar
  3. 3.
    Choi, S., et al.: Characterizing and classifying desktop grid. In: Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2007, pp. 743–748. IEEE (2007).  https://doi.org/10.1109/CCGRID.2007.31
  4. 4.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: The Fifth IEEE/ACM International Workshop on Grid Computing, GRID 2004, pp. 4–10. IEEE CS Press (2004).  https://doi.org/10.1109/GRID.2004.14
  5. 5.
    Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling implementation for high-throughput virtual drug screening using BOINC-based desktop grid. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 480–491. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62932-2_46CrossRefGoogle Scholar
  6. 6.
    Bielska, E., et al.: Virtual screening strategies in drug design – methods and applications. J. Biotech. Comput. Biol. Bionanotechnol. 92(3), 249–264 (2011).  https://doi.org/10.5114/bta.2011.46542CrossRefGoogle Scholar
  7. 7.
    Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling for virtual drug screening optimization. J. Comput.-Aided Mol. Des. 32(2), 363–374 (2018).  https://doi.org/10.1007/s10822-017-0093-7CrossRefGoogle Scholar
  8. 8.
    Irwin, J., Shoichet, B.K.: Docking screens for novel ligands conferring new biology. J. Med. Chem. 59(9), 4103–4120 (2016).  https://doi.org/10.1021/acs.jmedchem.5b0200CrossRefGoogle Scholar
  9. 9.
    Rupakheti, C., Virshup, A., Yang, W., Beratan, D.N.: Strategy to discover diverse optimal molecules in the small molecule universe. J. Chem. Inf. Model. 55(3), 529–537 (2015).  https://doi.org/10.1021/ci500749qCrossRefGoogle Scholar
  10. 10.
    Harper, G., Pickett, S.D., Green, D.V.: Design of a compound screening collection for use in high throughput screening. Comb. Chem. High Throughput Screening 7(1), 63–70 (2004).  https://doi.org/10.2174/138620704772884832CrossRefGoogle Scholar
  11. 11.
    Rosenthal, R.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973).  https://doi.org/10.1007/BF01737559MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996).  https://doi.org/10.1006/game.1996.0027MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ieong, S., et al.: Fast and compact: a simple class of congestion games. In: AAAI 2005 Proceedings of the 20th National Conference on Artificial Intelligence, vol. 2, pp. 1–6. AAAI Press (2005)Google Scholar
  14. 14.
    Willet, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38(6), 983–996 (1998).  https://doi.org/10.1021/ci9800211CrossRefGoogle Scholar
  15. 15.
    Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D., Weinber, L.E.: Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 39(16), 3049–3059 (1996).  https://doi.org/10.1021/jm960290nCrossRefGoogle Scholar
  16. 16.
    Hann, M.M., Leach, A.R., Harper, G.: Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41(3), 856–864 (2001).  https://doi.org/10.1021/ci000403iCrossRefGoogle Scholar
  17. 17.
    Donassolo, B., Legrand, A., Geyer, C.: Non-cooperative scheduling considered harmful in collaborative volunteer computing environments. In: 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 144–153 (2011).  https://doi.org/10.1109/CCGrid.2011.34
  18. 18.
    Mazalov, V., Nikitina, N., Ivashko, E.: Hierarchical two-level game model for tasks scheduling in a desktop grid. In: Applied Problems in Theory of Probabilities and Mathematical Statistics Related to Modeling of Information Systems, 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 641–645 (2014).  https://doi.org/10.1109/ICUMT.2014.7002159
  19. 19.
    Jaghoori, M., et al.: A multi-infrastructure gateway for virtual drug screening. Concurrency Computat. Pract. Exper. 27, 4478–4490 (2015).  https://doi.org/10.1002/cpe.3498CrossRefGoogle Scholar
  20. 20.
    Krüger, J., et al.: Performance studies on distributed virtual screening. BioMed Res. Int. 1–7 (2014).  https://doi.org/10.1155/2014/624024. Article ID 624024
  21. 21.
    World Community Grid. https://www.worldcommunitygrid.org. Accessed 12 Apr 2018
  22. 22.
    Nakamura, Y., et al.: Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma. Cancer Med. 3(1), 25–35 (2014).  https://doi.org/10.1002/cam4.175CrossRefGoogle Scholar
  23. 23.
    Perryman, A.L., et al.: A virtual screen discovers novel, fragment-sized inhibitors of mycobacterium tuberculosis InhA. J. Chem. Inf. Model. 55(3), 645–659 (2015).  https://doi.org/10.1021/ci500672vCrossRefGoogle Scholar
  24. 24.
    Ochoa, R., Watowich, S.J., Flórez, A., et al.: Drug search for leishmaniasis: a virtual screening approach by grid computing. J. Comput.-Aided Mol. Des. 30(7), 541–552 (2016).  https://doi.org/10.1007/s10822-016-9921-4CrossRefGoogle Scholar
  25. 25.
    Ellingson, S.R., Baudry, J.: High-throughput virtual molecular docking with AutoDockCloud. Concurr. Comput. Pract. Exper. 26, 907–916 (2014).  https://doi.org/10.1002/cpe.2926CrossRefGoogle Scholar
  26. 26.
    Forli, S., et al.: Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5), 905–919 (2016).  https://doi.org/10.1038/nprot.2016.051CrossRefGoogle Scholar
  27. 27.
    Rupakheti, C.R.: Property Biased-Diversity Guided Explorations of Chemical Spaces. Ph.D. dissertation, Duke University, 138 p (2015)Google Scholar
  28. 28.
    Pradeep, P., Struble, C., Neumann, T., Sem, D.S., Merrill, S.J.: A novel scoring based distributed protein docking application to improve enrichment. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(6), 1464–1469 (2015).  https://doi.org/10.1109/TCBB.2015.2401020CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karelian Research Center of the Russian Academy of SciencesInstitute of Applied Mathematical ResearchPetrozavodskRussia

Personalised recommendations