Advertisement

Supercomputer Technology for Ultrasound Tomographic Image Reconstruction: Mathematical Methods and Experimental Results

  • Alexander Goncharsky
  • Sergey SeryozhnikovEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

This paper is concerned with layer-by-layer ultrasound tomographic imaging methods for differential diagnosis of breast cancer. The inverse problem of ultrasound tomography is formulated as a coefficient inverse problem for a hyperbolic differential equation. The scalar mathematical model takes into account wave phenomena, such as diffraction, refraction, multiple scattering, and absorption of ultrasound. The algorithms were tested on real data obtained in experiments on a test bench for ultrasound tomography studies. Low-frequency ultrasound in the 100–500 kHz band was used for sounding. An important result of this study is an experimental confirmation of the adequacy of the underlying mathematical model. The ultrasound tomographic imaging methods developed have a spatial resolution of 2 mm, which is acceptable for medical diagnostics. The experiments were carried out using phantoms with parameters close to the acoustical properties of human soft tissues. The image reconstruction algorithms are designed for graphics processors. Architecture of the GPU cluster for ultrasound tomographic imaging is proposed, which can be employed as a computing device in a tomographic complex.

Keywords

Ultrasound tomography Coefficient inverse problem Medical imaging GPU cluster 

Notes

Acknowledgements

This work was supported by Russian Science Foundation [grant number 17-11-01065]. The research is carried out at Lomonosov Moscow State University. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

References

  1. 1.
    Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017).  https://doi.org/10.1016/j.ultrasmedbio.2016.08.021CrossRefGoogle Scholar
  2. 2.
    Jifik, R., et al.: Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography. IEEE Trans. Ultrason. Ferr. 59(2), 254–264 (2012).  https://doi.org/10.1109/tuffc.2012.2185CrossRefGoogle Scholar
  3. 3.
    Wiskin, J., et al.: Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am. 133(5), 3229–3229 (2013).  https://doi.org/10.1121/1.4805138CrossRefGoogle Scholar
  4. 4.
    Burov, V.A., Zotov, D.I., Rumyantseva, O.D.: Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data. Acoust. Phys. 61(2), 231–248 (2015).  https://doi.org/10.1134/s1063771015020013CrossRefGoogle Scholar
  5. 5.
    Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii J. Math. 39(4), 486–493 (2018).  https://doi.org/10.1134/S1995080218040030MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Natterer, F.: Sonic imaging. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1–23. Springer, New York (2014).  https://doi.org/10.1007/978-3-642-27795-5_37-2CrossRefGoogle Scholar
  7. 7.
    Klibanov, M.V., Timonov, A.A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Walter de Gruyter GmbH (2004).  https://doi.org/10.1515/9783110915549
  8. 8.
    Goncharsky, A., Romanov, S., Seryozhnikov, S.: Inverse problems of 3D ultrasonic tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014).  https://doi.org/10.1016/j.wavemoti.2013.10.001MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Probl. 29(7), 075004 (2013).  https://doi.org/10.1088/0266-5611/29/7/075004MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Probl. 33(2), 025003 (2017).  https://doi.org/10.1088/1361-6420/33/2/025003MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional ultrasonic tomography. Dokl. Phys. 468(3), 268–271 (2016).  https://doi.org/10.7868/S0869565216150093CrossRefGoogle Scholar
  12. 12.
    Goncharsky, A.V., Romanov, S.Y.: Inverse problems of ultrasound tomography in models with attenuation. Phys. Med. Biol. 59(8), 1979–2004 (2014)CrossRefGoogle Scholar
  13. 13.
    Goncharsky, A., Romanov, S., Seryozhnikov, S.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150 (2016).  https://doi.org/10.1016/j.ultras.2016.01.008CrossRefGoogle Scholar
  14. 14.
    Voevodin, V., et al.: Practice of “Lomonosov” supercomputer. Open Syst. J. 7, 36–39 (2012). http://www.osp.ru/os/2012/07/13017641/Google Scholar
  15. 15.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–629 (1977).  https://doi.org/10.1090/s0025-5718-1977-0436612-4MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fink, M.: Time reversal in acoustics. Contemp. Phys. 37(2), 95–109 (1996).  https://doi.org/10.1080/00107519608230338CrossRefGoogle Scholar
  17. 17.
    Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035–1038 (1963)zbMATHGoogle Scholar
  18. 18.
    Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Springer, Netherlands (1994).  https://doi.org/10.1007/978-94-011-1026-6CrossRefGoogle Scholar
  19. 19.
    Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Mathematics and Its Applications. Springer, Netherlands (1995).  https://doi.org/10.1007/978-94-015-8480-7CrossRefzbMATHGoogle Scholar
  20. 20.
    Hamilton, B., Bilbao, S.: Fourth-order and optimised finite difference schemes for the 2-D wave equation. In: Proceedings of the 16th International Conference on Digital Audio Effects (DAFx-13), pp. 363–395. Springer (2013)Google Scholar
  21. 21.
    Bakushinsky, A., Goncharsky, A.: Iterative Methods for Solving ill-Posed Problems. Nauka, Moscow (1989)Google Scholar
  22. 22.
    Goncharsky, A.V., Seryozhnikov, S.Y.: The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays2017. Communications in Computer and Information Science, vol. 793, pp. 363–395. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71255-0_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations