Advertisement

Supercomputer Simulation Study of the Convergence of Iterative Methods for Solving Inverse Problems of 3D Acoustic Tomography with the Data on a Cylindrical Surface

  • Sergey RomanovEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

This paper is dedicated to developing effective methods of 3D acoustic tomography. The inverse problem of acoustic tomography is formulated as a coefficient inverse problem for a hyperbolic equation where the speed of sound and the absorption factor in three-dimensional space are unknown. Substantial difficulties in solving this inverse problem are due to its nonlinear nature. A method which uses short sounding pulses of two different central frequencies is proposed. The method employs an iterative parallel gradient-based minimization algorithm at the higher frequency with the initial approximation of unknown coefficients obtained by solving the inverse problem at the lower frequency. The efficiency of the proposed method is illustrated via a model problem. In the model problem an easy to implement 3D tomographic scheme is used with the data specified at a cylindrical surface. The developed algorithms can be efficiently parallelized using GPU clusters. Computer simulations show that a GPU cluster capable of performing 3D image reconstruction within reasonable time.

Keywords

Ultrasound tomography Medical imaging Inverse problem Gradient method 

Notes

Acknowledgement

This work was supported by Russian Science Foundation [grant number 17-11-01065]. The research is carried out at Lomonosov Moscow State University. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

References

  1. 1.
    Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii J. Math. 39(4), 486–493 (2018).  https://doi.org/10.1134/S1995080218040030MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beilina, L., Klibanov, M.V., Kokurin, M.Y.: Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J. Math. Sci. 167(3), 279–325 (2010).  https://doi.org/10.1007/s10958-010-9921-1MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boehm, C., Martiartu, N.K., Vinard, N., Balic, I.J., Fichtner, A.: Time-domain spectral-element ultrasound waveform tomography using a stochastic quasi-newton method. In: Proceedings of SPIE 10580, Medical Imaging 2018: Ultrasonic Imaging and Tomography p. 105800H, March 2018.  https://doi.org/10.1117/12.2293299
  4. 4.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150 (2016).  https://doi.org/10.1016/j.ultras.2016.01.008CrossRefGoogle Scholar
  5. 5.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Supercomputer technologies in tomographic imaging applications. Supercomput. Front. Innov. 3(1), 41–66 (2016).  https://doi.org/10.14529/jsfi160103CrossRefGoogle Scholar
  6. 6.
    Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency three-dimensional ultrasonic tomography. Doklady Phys. 61(5), 211–214 (2016).  https://doi.org/10.1134/s1028335816050086CrossRefGoogle Scholar
  7. 7.
    Goncharsky, A.V., Seryozhnikov, S.Y.: The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 363–395. Springer, Cham. (2017).  https://doi.org/10.1007/978-3-319-71255-0_29CrossRefGoogle Scholar
  8. 8.
    Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Probl. 29(7), 075004 (2013).  https://doi.org/10.1088/0266-5611/29/7/075004MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goncharsky, A.V., Romanov, S.Y.: Inverse problems of ultrasound tomography in models with attenuation. Phys. Med. Biol. 59(8), 1979–2004 (2014).  https://doi.org/10.1088/0031-9155/59/8/1979CrossRefGoogle Scholar
  10. 10.
    Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Probl. 33(2), 025003 (2017).  https://doi.org/10.1088/1361-6420/33/2/025003MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goncharsky, A., Romanov, S., Seryozhnikov, S.: Inverse problems of 3D ultrasonic tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014).  https://doi.org/10.1016/j.wavemoti.2013.10.001MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jirik, R., et al.: Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography. IEEE T. Ultrason. Ferr. 59(2), 254–264 (2012)CrossRefGoogle Scholar
  13. 13.
    Klibanov, M.V., Timonov, A.A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Walter de Gruyter GmbH, january 2004Google Scholar
  14. 14.
    Kuzhuget, A.V., Beilina, L., Klibanov, M.V., Sullivan, A., Nguyen, L., Fiddy, M.A.: Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm. Inverse Probl. 28(9), 095007 (2012).  https://doi.org/10.1088/0266-5611/28/9/095007CrossRefzbMATHGoogle Scholar
  15. 15.
    Mu, S.Y., Chang, H.W.: Dispersion and local-error analysis of compact LFE-27 formulas for obtaining sixth-order accurate numerical solutions of 3D Helmholz equation. Pr. Electromagn. Res. S. 143, 285–314 (2013)CrossRefGoogle Scholar
  16. 16.
    Natterer, F.: Possibilities and limitations of time domain wave equation imaging. In: AMS Vol. 559: Tomography and Inverse Transport Theory, pp. 151–162. American Mathematical Society (2011).  https://doi.org/10.1090/conm/559
  17. 17.
    Natterer, F.: Sonic imaging. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1–23. Springer Nature, New York (2014).  https://doi.org/10.1007/978-3-642-27795-5_37-2CrossRefGoogle Scholar
  18. 18.
    Romanov, S.: Optimization of numerical algorithms for solving inverse problems of ultrasonic tomography on a supercomputer. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 67–79. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71255-0_6CrossRefGoogle Scholar
  19. 19.
    Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”: supercomputing at Moscow State University. In: Vetter, J. (ed.) Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, CRC Press, Boca Raton (2013)Google Scholar
  20. 20.
    Saha, R.K., Sharma, S.K.: Validity of a modified Born approximation for a pulsed plane wave in acoustic scattering problems. Phys. Med. Biol. 50(12), 2823 (2005)CrossRefGoogle Scholar
  21. 21.
    Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)CrossRefGoogle Scholar
  22. 22.
    Schmidt, S., Duric, N., Li, C., Roy, O., Huang, Z.F.: Modification of Kirchhoff migration with variable sound speed and attenuation for acoustic imaging of media and application to tomographic imaging of the breast. Med. Phys. 38(2), 998–1007 (2011).  https://doi.org/10.1118/1.3539552CrossRefGoogle Scholar
  23. 23.
    Wiskin, J.W., Borup, D.T., Iuanow, E., Klock, J., Lenox, M.W.: 3-D nonlinear acoustic inverse scattering: Algorithm and quantitative results. EEE Trans. Ultrason. Ferroelectr. Freq. Control 64(8), 1161–1174 (2017)CrossRefGoogle Scholar
  24. 24.
    Zeqiri, B., Baker, C., Alosa, G., Wells, P.N.T., Liang, H.D.: Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors. Phys. Med. Biol. 58(15), 5237 (2013).  https://doi.org/10.1088/0031-9155/58/15/5237CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations