New QM/MM Implementation of the MOPAC2012 in the GROMACS

  • Arthur O. ZalevskyEmail author
  • Roman V. Reshetnikov
  • Andrey V. Golovin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


Hybrid QM/MM simulations augmented with enhanced sampling techniques proved to be advantageous in different usage scenarios, from studies of biological systems to drug and enzyme design. However, there are several factors that limit the applicability of the approach. First, typical biologically relevant systems are too large and hence computationally expensive for many QM methods. Second, a majority of fast non ab initio QM methods contain parameters for a very limited set of elements, which restrains their usage for applications involving radionuclides and other unusual compounds. Therefore, there is an incessant need for new tools which will expand both type and size of simulated objects. Here we present a novel combination of widely accepted molecular modelling packages GROMACS and MOPAC2012 and demonstrate its applicability for design of a catalytic antibody capable of organophosphorus compound hydrolysis.


QMMM hpc Molecular modelling Rational design 



Authors are grateful to Dr. J. Stewart for sources of MOPAC2012 and initial hints on implementation. Computational experiments were carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University supported by the project RFMEFI62117X0011. The study was supported by the Russian Ministry of Education and Science grant RFMEFI57617X0095.


  1. 1.
    Warshel, A., Levitt, M.: Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103(2), 227–249 (1976)CrossRefGoogle Scholar
  2. 2.
    Vanatta, D.K., Shukla, D., Lawrenz, M., Pande, V.S.: A network of molecular switches controls the activation of the two-component response regulator NtrC. Nat. Commun. 6, 7283 (2015)CrossRefGoogle Scholar
  3. 3.
    Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 99(20), 12562–12566 (2002)CrossRefGoogle Scholar
  4. 4.
    Quhe, R., Nava, M., Tiwary, P., Parrinello, M.: Path integral metadynamics. J. Chem. Theory Comput. 11(4), 1383–1388 (2015)CrossRefGoogle Scholar
  5. 5.
    Bussi, G., Laio, A., Parrinello, M.: Equilibrium free energies from nonequilibrium metadynamics. Phys. Rev. Lett. 96(9), 090601 (2006)CrossRefGoogle Scholar
  6. 6.
    Schulz, R., et al.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013)CrossRefGoogle Scholar
  7. 7.
    Stewart, J.J.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19(1), 1–32 (2013)CrossRefGoogle Scholar
  8. 8.
    Dapprich, S., Komromi, I., Suzie, B., Morokuma, K., Frisch, M.J.: A new ONIOM implementation in Gaussian98. part i. The calculation of energies, gradients, vibrational frequencies and electric field derivatives1dedicated to professor Keiji Morokuma in celebration of his 65th birthday.1. J. Mol. Struct. THEOCHEM 461-462, 1–21 (1999)Google Scholar
  9. 9.
    Abraham, M.J., van der Spoel, D., Lindahl, E., Hess, B.: GROMACS User Manual version 5.0.7 (2015)Google Scholar
  10. 10.
    Smirnov, I., et al.: Reactibodies generated by kinetic selection couple chemical reactivity with favorable protein dynamics. Proc. Natl. Acad. Sci. U.S.A. 108(38), 15954–15959 (2011)CrossRefGoogle Scholar
  11. 11.
    Smirnov, I.V., et al.: Robotic QM/MM-driven maturation of antibody combining sites. Sci. Adv. 2(10), e1501695 (2016)CrossRefGoogle Scholar
  12. 12.
    Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)CrossRefGoogle Scholar
  13. 13.
    Lindorff-Larsen, K., et al.: Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8), 1950–1958 (2010)Google Scholar
  14. 14.
    Stewart, J.: Optimization of parameters for semiempirical methods i. method. J. Comput. Chem. 10(2), 221–264 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nachon, F., Asojo, O.A., Borgstahl, G.E., Masson, P., Lockridge, O.: Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging. Biochemistry 44(4), 1154–1162 (2005)CrossRefGoogle Scholar
  16. 16.
    Nachon, F., et al.: X-ray crystallographic snapshots of reaction intermediates in the G117H mutant of human butyrylcholinesterase, a nerve agent target engineered into a catalytic bioscavenger. Biochem. J. 434(1), 73–82 (2011)CrossRefGoogle Scholar
  17. 17.
    Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)Google Scholar
  18. 18.
    Morris, G.M., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  19. 19.
    Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arthur O. Zalevsky
    • 1
    • 4
    Email author
  • Roman V. Reshetnikov
    • 2
    • 3
    • 4
  • Andrey V. Golovin
    • 1
    • 3
    • 4
  1. 1.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Apto-Pharm LLCMoscowRussia
  4. 4.Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations