Modeling Groundwater Flow in Unconfined Conditions of Variable Density Solutions in Dual-Porosity Media Using the GeRa Code

  • Ivan KapyrinEmail author
  • Igor Konshin
  • Vasily Kramarenko
  • Fedor Grigoriev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


Flow of variable density solution in unconfined conditions and transport in dual-porosity media mathematical model is introduced. We show the application of the model to a real object which is a polygon of deep well liquid radioactive waste injection. Several assumptions are justified to simplify the model and it is discretized. The model is aimed at assessment of the role of density changes on the contaminant propagation dynamics within the polygon. The method of parallelization is described and the results of numerical experiments are presented herein.


Parallel computing Density-driven flow Dual-porosity media Unconfined flow Liquid waste deep injection 


  1. 1.
    Rybalchenko, A.I., Pimenov, M.K., Kostin, P.P., et al.: Deep disposal of liquid radioactive waste, IzdAT, Moscow 256 p. (1994). (in Russian)Google Scholar
  2. 2.
    Compton, K.L., Novikov, V., Parker, F.L.: Deep Well Injection of Liquid Radioactive Waste at Krasnoyarsk-26, Vol. I, RR-00-1, International Institute for Applied Systems Analysis, Laxenburg, Austria (2000)Google Scholar
  3. 3.
    Kapyrin, I.V., Ivanov, V.A., Kopytov, G.V., Utkin, S.S.: Integral code GeRa for the safety substantiation of disposal of radioactive waste. Mountain J. 10, 44–50 (2015). (in Russian)Google Scholar
  4. 4.
    Kapyrin, I.V., Konshin, I.N., Kopytov, G.V., Nikitin, K.D., Vassilevski, Yu.V.: Hydrogeological modeling in problems of safety substantiation of radioactive waste burials using the GeRa code. In: Supercomputer Days in Russia: Proceedings of the International Conference, Moscow, 28–29 September 2015, pp. 122–132. Publishing House of Moscow State University, Moscow (2015). (in Russian)Google Scholar
  5. 5.
    Plenkin, A.V., Chernyshenko, A.Y., Chugunov, V.N., Kapyrin, I.V.: Methods of constructing adaptive unstructured grids for solving hydrogeological problems. Comput. Methods Program. 16, 518–533 (2015). (in Russian)Google Scholar
  6. 6.
    Hammond, G.E., Lichtner, P.C., Mills, R.T.: Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN. Water Resour. Res. 50(1), 208–228 (2014)CrossRefGoogle Scholar
  7. 7.
    Freedman, V.L., et al.: A high-performance workflow system for subsurface simulation. Environ. Model. Softw. 55, 176–189 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhang, K., Wu, Y.S., Pruess, K.: User’s guide for TOUGH2-MP-A massively parallel version of the TOUGH2 code (No. LBNL-315E). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2008)Google Scholar
  9. 9.
    Lekhov, A.V.: Physical-chemical hydrogeodynamics, KDU 2010, 500 p. (2010). (in Russian)Google Scholar
  10. 10.
    Rabinovich, V.A., Khavin, Z.Ya.: Brief Chemical Reference Book, Leningrad, 392 p. (1978). (in Russian)Google Scholar
  11. 11.
    Simunek, J., Van Genuchten, M.T., Sejna, M.: The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 3.0, HYDRUS software series 1. Department of Environmental Sciences, University of California Riverside (2005)Google Scholar
  12. 12.
    Diersch, H.J.: FEFLOW-white papers, vol. I. WASY GmbH Institute for water resources planning and systems research, Berlin, 366 p. (2005)Google Scholar
  13. 13.
    Liu, X.: Parallel modeling of three-dimensional variably saturated ground water flows with unstructured mesh using open source finite volume platform OpenFOAM. Eng. Appl. Comput. Fluid Mech. 7(2), 223–238 (2013)Google Scholar
  14. 14.
    Paniconi, C., Putti, M.: A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour. Res. 30(12), 3357–3374 (1994)CrossRefGoogle Scholar
  15. 15.
    INM, RAS Cluster. Accessed 15 Apr 2018. (in Russian)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ivan Kapyrin
    • 1
    • 2
    Email author
  • Igor Konshin
    • 2
    • 3
  • Vasily Kramarenko
    • 2
  • Fedor Grigoriev
    • 1
    • 2
  1. 1.Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE)MoscowRussia
  2. 2.Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS)MoscowRussia
  3. 3.Dorodnicyn Computing Centre (FRC CSC RAS)MoscowRussia

Personalised recommendations