Advertisement

Maximus: A Hybrid Particle-in-Cell Code for Microscopic Modeling of Collisionless Plasmas

  • Julia KropotinaEmail author
  • Andrei Bykov
  • Alexandre Krassilchtchikov
  • Ksenia Levenfish
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

A second-order accurate divergence-conserving hybrid particle-in-cell code Maximus has been developed for microscopic modeling of collisionless plasmas. The main specifics of the code include a constrained transport algorithm for exact conservation of magnetic field divergence, a Boris-type particle pusher, a weighted particle momentum deposit on the cells of the 3d spatial grid, an ability to model multispecies plasmas, and an adaptive time step. The code is efficiently parallelized for running on supercomputers by means of the message passing interface (MPI) technology; an analysis of parallelization efficiency and overall resource intensity is presented. A Maximus simulation of the shocked flow in the Solar wind is shown to agree well with the observations of the Ion Release Module (IRM) aboard the Active Magnetospheric Particle Tracer Explorers interplanetary mission.

Keywords

Hybrid particle-in-cell modeling High-performance computing Shocked collisionless plasmas The Solar wind 

Notes

Acknowledgments

Some of the presented modeling was performed at the “Tornado” subsystem of the supercomputing center of St. Petersburg Polytechnic University, whose support is readily acknowledged.

Supplementary material

477659_1_En_21_MOESM1_ESM.zip (2 mb)
Supplementary material 1 (zip 2002 KB)

References

  1. 1.
    Matthews, A.P.: J. Comput. Phys. 112, 102–116 (1994)CrossRefGoogle Scholar
  2. 2.
    Lipatov, A.S.: The Hybrid Multiscale Simulation Technology, p. 403. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-662-05012-5CrossRefzbMATHGoogle Scholar
  3. 3.
    Winske, D., Omidi, N.: Hybrid codes. Methods and applications. Computer Space Plasma Physics: Simulation Techniques and Software, pp. 103–160 (1993)Google Scholar
  4. 4.
    Quest, K.B.: J. Geophys. Res. 93, 9649 (1988)CrossRefGoogle Scholar
  5. 5.
    Giacalone, J., Burgess, D., Schwartz, S.J., Ellison, D.C., Bennett, L.: J. Geophys. Res. 102, 19789 (1997)CrossRefGoogle Scholar
  6. 6.
    Burgess, D., Möbius, E., Scholer, M.: Space Sci. Rev. 173, 5 (2012)CrossRefGoogle Scholar
  7. 7.
    Caprioli, D., Spitkovsky, A.: Astrophys. J. 783(2), 91 (2014)CrossRefGoogle Scholar
  8. 8.
    Caprioli, D., Spitkovsky, A.: Astrophys. J. 794(2), 46 (2014)CrossRefGoogle Scholar
  9. 9.
    Caprioli, D., Spitkovsky, A.: Astrophys. J. 794(2), 47 (2014)CrossRefGoogle Scholar
  10. 10.
    Marcowith, A., et al.: Rep. Progress Phys. 79(4), 046901 (2016)CrossRefGoogle Scholar
  11. 11.
    Kropotina, Yu.A, Bykov, A.M., Gustov, M.Yu., Krassilchtchikov, A.M., Levenfish, K.P.: JTePh 60(2), 231–239 (2016)Google Scholar
  12. 12.
    Kropotina, Yu.A., Bykov, A.M., Krasil’shchikov, A.M., Levenfish, K.P.: JTePh, 61(4), 517–524 (2016)Google Scholar
  13. 13.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation, p. 373. IOP Publishing, Bristol (1991)CrossRefGoogle Scholar
  14. 14.
    Hockney, R.W.: Measurements of collision and heating times in a two-dimensional thermal computer plasma. J. Comput. Phys. 8(1), 19–44 (1971)CrossRefGoogle Scholar
  15. 15.
    Gargaté, L., et al.: Comput. Phys. Commun. 176, 419 (2007)CrossRefGoogle Scholar
  16. 16.
    Kunz, M.W., Stone, J.M., Bai, X.-N.: J. Comput. Phys. 259, 154 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ellison, D.C., Moebius, E., Paschmann, G.: Astrophys. J. 352, 376 (1990). Thermal Computer Plasma. Journal of computational physics 8, pp. 19–44 (1971)Google Scholar
  18. 18.
    Rosin, M.S., et al.: Mon. Not. R. Astron. Soc. 413, 7 (2011)CrossRefGoogle Scholar
  19. 19.
    Amano, T., Higashimori, K., Shirakawa, K.: J. Comput. Phys. 275, 197 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Balsara, D.S.: Astrophys. J. 151, 149–184 (2004)CrossRefGoogle Scholar
  21. 21.
    LeVeque, R.J., Mikhalas, D., Dorfi, E.A., Muller, E.: Computational Methods for Astrophysical Fluid Flow, p. 481. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-31632-9CrossRefGoogle Scholar
  22. 22.
    Balsara, D.S.: Astrophys. J. 116, 119–131 (1998)CrossRefGoogle Scholar
  23. 23.
    Florinsky, V., Heerikhuisen, J., Niemec, J., Ernst, A.: Astrophys. J. 826, 197 (2016)CrossRefGoogle Scholar
  24. 24.
    Niemec, J., Florinsky, V., Heerikhuisen, J., Nishikava, K.-I.: Astrophys. J. 826, 198 (2016)CrossRefGoogle Scholar
  25. 25.
    Kropotina, J.A., Bykov, A.M., Krasilshchikov, A.M., Levenfish, K.P.: JPCS 1038, 012014 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julia Kropotina
    • 1
    • 2
    Email author
  • Andrei Bykov
    • 1
    • 2
  • Alexandre Krassilchtchikov
    • 1
  • Ksenia Levenfish
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations