CardioModel – New Software for Cardiac Electrophysiology Simulation

  • Valentin Petrov
  • Sergey Lebedev
  • Anna Pirova
  • Evgeniy Vasilyev
  • Alexander Nikolskiy
  • Vadim Turlapov
  • Iosif Meyerov
  • Grigory OsipovEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


The rise of supercomputing technologies during the last decade has enabled significant progress towards the invention of a personal biologically relevant computer model of a human heart. In this paper we present a new code for numerical simulation of cardiac electrophysiology on supercomputers. Having constructed a personal segmented tetrahedral grid of the human heart based on a tomogram, we solve the bidomain equations of cardiac electrophysiology using the finite element method thus achieving the goal of modeling of the action potential propagation in heart. Flexible object-oriented architecture of the software allows us to expand its capabilities by using relevant cell models, preconditioners and numerical methods for solving SLAEs. The results of numerical modeling of heart under normal conditions as well as a number of simulated pathologies are in a good agreement with theoretical expectations. The software achieves at least 75% scaling efficiency on the 120 ranks on the Lobachevsky supercomputer.


Heart simulation Cardiac electrophysiology Bidomain model Finite element method Numerical analysis Parallel computing 



The study was supported by the Ministry of Education of Russian Federation (Contract # 02.G25.31.0157, date 01.12.2015).


  1. 1.
    Crampin, E.J., et al.: Computational physiology and the physiome project. Exp. Physiol. 89(1), 1–26 (2004)CrossRefGoogle Scholar
  2. 2.
    Lloyd, C.M., et al.: The CellML model repository. Bioinformatics 24(18), 2122–2123 (2008)CrossRefGoogle Scholar
  3. 3.
    Vázquez, M., et al.: Alya red CCM: HPC-based cardiac computational modelling. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and Experimental Fluid Mechanics. ESE, pp. 189–207. Springer, Cham (2015). Scholar
  4. 4.
    Bishop, M.J., et al.: Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am. J. Physiol. Heart Circ. Physiol. 298(2), H699–H718 (2010)CrossRefGoogle Scholar
  5. 5.
    Vázquez, M., et al.: Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Trayanova, N.A.: Whole-heart modeling. Circ. Res. 108(1), 113–128 (2011)CrossRefGoogle Scholar
  7. 7.
    Arevalo, H.J., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016)CrossRefGoogle Scholar
  8. 8.
    Richards, D.F., et al.: Towards real-time simulation of cardiac electrophysiology in a human heart at high resolution. Comput. Methods Biomech. Biomed. Eng. 16(7), 802–805 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chapelle, D., Collin, A., Gerbeau, J.-F.: A surface-based electrophysiology model relying on asymptotic analysis and motivated by cardiac atria modeling. Math. Models Methods Appl. Sci. 23(14), 2749–2776 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Vassilevski, Y., Danilov, A., Ivanov, Y., Simakov, S., Gamilov, T.: Personalized anatomical meshing of the human body with applications. In: Quarteroni, A. (ed.) Modeling the Heart and the Circulatory System. MS&A, vol. 14, pp. 221–236. Springer, Cham (2015). Scholar
  11. 11.
    Danilov, A.A., et al.: Parallel software platform INMOST: a framework for numerical modeling. Supercomput. Frontiers Innov. 2(4), 55–66 (2015)Google Scholar
  12. 12.
    Pravdin, S., et al.: Human heart simulation software for parallel computing systems. Procedia Comput. Sci. 66, 402–411 (2015)CrossRefGoogle Scholar
  13. 13.
    Mirams, G.R., et al.: Chaste: an open source C++ library for computational physiology and biology. PLoS Comput. Biol. 9(3), e1002970 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schmitt, O.H.: Biological information processing using the concept of interpenetrating domains. In: Leibovic, K.N. (ed.) Information Processing in The Nervous System, pp. 325–331. Springer, Heidelberg (1969). Scholar
  15. 15.
    Tung, L.: A bi-domain model for describing ischemic myocardial dc potentials. Massachusetts Institute of Technology (1978)Google Scholar
  16. 16.
    Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Rev. 41(2), 278–300 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Balay, S.: PETSc Users Manual, ANL-95/11–Revision 3.8. Argonne National Lab (2017)Google Scholar
  18. 18.
  19. 19.
    Lebedev, S., Akhmedzhanov, D., Kozinov, E., Meyerov, I., Pirova, A., Sysoyev, A.: Dynamic parallelization strategies for multifrontal sparse cholesky factorization. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 68–79. Springer, Cham (2015). Scholar
  20. 20.
    Bastrakov, S., et al.: High performance computing in biomedical applications. Procedia Comput. Sci. 18, 10–19 (2013)CrossRefGoogle Scholar
  21. 21.
    Linge, S., et al.: Numerical solution of the bidomain equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895), 1931–1950 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Clayton, R.H., et al.: Models of cardiac tissue electrophysiology: progress, challenges and open questions. Progr. Biophys. Mol. Biol. 104(1), 22–48 (2011)CrossRefGoogle Scholar
  23. 23.
    Pathmanathan, P., et al.: A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Progr. Biophys. Mol. Biol. 102(2), 136–155 (2010)CrossRefGoogle Scholar
  24. 24.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bernabeu, M.O., et al.: Chaste: a case study of parallelisation of an open source finite-element solver with applications to computational cardiac electrophysiology simulation. Int. J. HPC Appl. 28(1), 13–32 (2014)MathSciNetGoogle Scholar
  26. 26.
    Sundnes, J., Lines, G.T., Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2), 233–248 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Santos, R.W., et al.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vasiliev, E.: Generation of an atlas-based finite element model of the heart for cardiac simulation. Int. Sci. J. Math. Model. 4, 207–209 (2017)Google Scholar
  29. 29.
    Lachinov, D., Belokamenskaya, A., Turlapov, V.: Precise automatic cephalometric landmark detection algorithm for CT images. In: Proceedings of Graphicon 2017, pp. 275–278 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentin Petrov
    • 1
  • Sergey Lebedev
    • 1
  • Anna Pirova
    • 1
  • Evgeniy Vasilyev
    • 1
  • Alexander Nikolskiy
    • 1
    • 2
  • Vadim Turlapov
    • 1
  • Iosif Meyerov
    • 1
  • Grigory Osipov
    • 1
    Email author
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia
  2. 2.Nizhni Novgorod State Medical AcademyNizhny NovgorodRussia

Personalised recommendations