The Algorithm for Transferring a Large Number of Radionuclide Particles in a Parallel Model of Ocean Hydrodynamics

  • Vladimir BibinEmail author
  • Rashit Ibrayev
  • Maxim Kaurkin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


The aim of the research is concerned with the description of algorithm of transferring a large, up to 106, number of radionuclide particles in a general circulation model of the ocean, INMIO. Much attention is paid to the functioning of the algorithm in conditions of the original model parallelism. The order of the information storage necessary in the course of model calculations is given in this paper. The important aspects of saving calculated results to external media are revealed. The algorithm of radionuclide particles decay is described. The results of the experiment obtained by calculation of the original model based on the configuration of the Laptev Sea are presented.


Lagrangian model Parallel computing Particles transfer Radioactive decay 


  1. 1.
    Zhang, Z., Chen, Q.: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ. 41(25), 5236–5248 (2007)CrossRefGoogle Scholar
  2. 2.
    Durst, F., Milojevic, D.: Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study. Appl. Math. Model. 8, 101–115 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bilashenko, V.P., et al.: Prediction and evaluation of the radioecological consequences of a hypothetical accident on the sunken nuclear submarine B-159 in the Barents Sea Antipov. At. Energ. 119(2), 132–141 (2015)CrossRefGoogle Scholar
  4. 4.
    Heldal, H.E., Vikebo, F., Johansen, G.O.: Dispersal of the radionuclide Caesium-137 from point sources in the barents and norwegian seas and its potential contamination of the arctic marine food chain: coupling numerical ocean models with geographical fish distribution. Environ. Pollut. 180, 190–198 (2013)CrossRefGoogle Scholar
  5. 5.
    Döös, K., Kjellsson, J., Jönsson, B.: TRACMASS—a lagrangian trajectory model. In: Soomere, T., Quak, E. (eds.) Preventive Methods for Coastal Protection, pp. 225–249. Springer, Heidelberg (2013). Scholar
  6. 6.
    Döös, K., Jönsson, B., Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0. Geosci. Model Dev. 10, 1733–1749 (2017)CrossRefGoogle Scholar
  7. 7.
    Blanke, B., Raynaud, S.: Kinematics of the pacific equatorial undercurrent: an eulerian and lagrangian approach from GCM results. J. Phys. Oceanogr. 27, 1038–1053 (1997)CrossRefGoogle Scholar
  8. 8.
    Paris, C.B., Helgers, J., van Sebille, E., Srinivasan, A.: Connectivity Modeling System: A probabilistic modeling tool for the multiscale tracking of biotic and abiotic variability in the ocean. Environ. Modell. Softw. 42, 47–54 (2013)CrossRefGoogle Scholar
  9. 9.
    Lange, M., Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev. 10, 4175–4186 (2017)CrossRefGoogle Scholar
  10. 10.
    van Sebille, E., Griffies, S.M., Abernathey, R., et al.: Lagrangian ocean analysis: Fundamentals and practices. Ocean Model. 121, 49–75 (2018). (total 35 authors)CrossRefGoogle Scholar
  11. 11.
    Ibrayev, R.A., Khabeev, R.N., Ushakov, K.V.: Eddy-resolving 1/10° model of the world ocean. Izvestiya Atmos. Oceanic Phys. 48(1), 37–46 (2012)CrossRefGoogle Scholar
  12. 12.
    Kalmykov, V.V., Ibrayev, R.A.: A framework for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures. Numer. Methods Program. 14(2), 88–95 (2013). (in Russian)Google Scholar
  13. 13.
    Kaurkin, M.N., Ibrayev, R.A., Belyaev, K.P.: Data assimilation ARGO data into the ocean dynamics model with high spatial resolution using Ensemble Optimal Interpolation (EnOI). Oceanology 56(6), 774–781 (2016)CrossRefGoogle Scholar
  14. 14.
    Koromyslov, A., Ibrayev, R., Kaurkin, M.: The technology of nesting a regional ocean model into a global one using a computational platform for massively parallel computers CMF. In: Voevodin, V., Sobolev, S. (eds.) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 241-250. Springer, Cham (2017).
  15. 15.
    Kalmykov, V.V., Ibrayev, R.A., Kaurkin, M.N., Ushakov, K.V.: Compact modeling framework v3.0 for high-resolution global ocean-ice-atmosphere models. Geosci. Model Dev. Discuss.
  16. 16.
    Date, C.J.: Introduction to Database Systems (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir Bibin
    • 4
    • 5
    Email author
  • Rashit Ibrayev
    • 1
    • 2
    • 3
  • Maxim Kaurkin
    • 1
    • 2
    • 3
  1. 1.Institute of Numerical Mathematics RASMoscowRussia
  2. 2.P.P. Shirshov Institute of Oceanology RASMoscowRussia
  3. 3.Hydrometeorological Centre of RussiaMoscowRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.Nuclear Safety Institute RASMoscowRussia

Personalised recommendations