Advertisement

Parallel Algorithm for One-Way Wave Equation Based Migration for Seismic Imaging

  • Alexander Pleshkevich
  • Dmitry Vishnevsky
  • Vadim LisitsaEmail author
  • Vadim Levchenko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

Seismic imaging is the final stage of the seismic processing allowing to reconstruct the internal subsurface structure. This procedure is one of the most time consuming and it requires huge computational resources to get high-quality amplitude-preserving images. In this paper, we present a parallel algorithm of seismic imaging, based on the solution of the one-way wave equation. The algorithm includes parallelization of the data flow, due to the multiple sources/receivers pairs processing. Wavefield extrapolation is performed by pseudo-spectral methods and applied by qFFT - each dataset is processed by a single MPI process. Common-offset vector images are constructed using all the solutions from all datasets thus by all-to-all MPI communications.

Keywords

One-way wave equation Pseudo-spectral methods qFFT CUDA Nested OMP MPI 

Notes

Acknowledgements

This research was initiated and sponsored by Central Geophysical Expedition JSC of Rosgeo. V. Lisitsa and D. Vishnevsky are also thankful to Russian Foundation for Basic Research for partial financial support of this work, grans no. 18-05-00031, 18-01-00579, 16-05-00800. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and cluster NKS-30T+GPU of the Siberian supercomputer center.

References

  1. 1.
    Claerbout, J.F.: Imaging the Earth’s Interior. Blackwell Scientific Publication, Oxford (1985)Google Scholar
  2. 2.
    Etgen, J., Gray, S.H., Zhang, Y.: An overview of depth imaging in exploration geophysics. Geophysics 74(6), WCA5-WCA17 (2009)CrossRefGoogle Scholar
  3. 3.
    Fu, L.-Y.: Wavefield interpolation in the Fourier wavefield extrapolation. Geophysics 69(1), 257–264 (2004)CrossRefGoogle Scholar
  4. 4.
    Gazdag, J.: Wave equation migration with the phase-shift method. Geophysics 43(7), 1342–1351 (1978)CrossRefGoogle Scholar
  5. 5.
    Gazdag, J., Sguazzero, P.: Migration of seismic data by phase shift plus interpolation. Geophysics 49(2), 124–131 (1984)CrossRefGoogle Scholar
  6. 6.
    Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, H.W., Liu, H., Tong, X.-L., Liu, Q.: A Fourier integral algorithm and its GPU/CPU collaborative implementation for one-way wave equation migration. Comput. Geosci. 45, 139–148 (2012)CrossRefGoogle Scholar
  8. 8.
    Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3D heterogeneous staggered-grid finite-differece modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soci. Am. 92(8), 3042–3066 (2002)CrossRefGoogle Scholar
  9. 9.
    Moczo, P., Kristek, J., Galis, M.: The finite-difference modelling of earthquake motion: waves and ruptures. Cambridge University Press (2014)Google Scholar
  10. 10.
    Muir, F., Dellinger, J., Etgen, J., Nichols, D.: Modeling elastic fields across irregular boundaries. Geophysics 57(9), 1189–1193 (1992)CrossRefGoogle Scholar
  11. 11.
    Pleshkevich, A., Vishnevsky, D., Lisitsa, V.: Explicit additive pseudospectral schemes of wavefield continuation with high-order approximation. SEG Techn. Program Expanded Abs. 36(1), 5546–5550 (2017)Google Scholar
  12. 12.
    Pleshkevich, A.L., Vishnevsky, D.M., Licitsa, V.V.: Development of pseudospectral amplitude-preserving 3D depth migration. Russian Geophys. (S), 94–101 (2017)Google Scholar
  13. 13.
    Stoffa, P.L., Fokkema, J.T., de Luna, F.R.M., Kessinger, W.P.: Split-step Fourier migration. Geophysics 55(4), 410–421 (1990)CrossRefGoogle Scholar
  14. 14.
    Virieux, J., Calandra, H., Plessix, R.-E.: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59(5), 794–813 (2011)CrossRefGoogle Scholar
  15. 15.
    Virieux, J., et al.: Seismic wave modeling for seismic imaging. Lead. Edge 28(5), 538–544 (2009)CrossRefGoogle Scholar
  16. 16.
    Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.-H., Wang, S.-Q., Yao, Z.-X.: Accelerating 3d Fourier migration with graphics processing units. Geophysics 74(6), WCA129-WCA139 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Pleshkevich
    • 1
  • Dmitry Vishnevsky
    • 2
  • Vadim Lisitsa
    • 3
    Email author
  • Vadim Levchenko
    • 4
  1. 1.Central Geophysics ExpeditionMoscowRussia
  2. 2.Institute of Petroleum Geology and Geophysics SB RASNovosibirskRussia
  3. 3.Institute of Petroleum Geology and Geophysics SB RASNovosibirsk State UniversityNovosibirskRussia
  4. 4.Institute of Applied Mathematics RASMoscowRussia

Personalised recommendations