Yet More Spirals

  • Thomas Mair
  • Markus A. Dahlem
  • Stefan C. MüllerEmail author
Part of the The Frontiers Collection book series (FRONTCOLL)


Having presented several systems in which biologically and medically relevant processes induce rotating spiral waves, we add several more examples of comparable nature: glycolytic waves in yeast, calcium waves in egg cells, wave-like patterns during spreading depression, and spiral waves in the epileptic neocortex.


  1. 1.
    B. Hess, A. Boiteux, Oscillatory phenomena in glycolysis. Annu. Rev. Biochem. 40, 237–258 (1971)CrossRefGoogle Scholar
  2. 2.
    T. Mair, Private communicationGoogle Scholar
  3. 3.
    T. Shinjyo, Y. Nakagawa, T. Ueda, Hierarchic spatio-temporal dynamics in glycolysis. Physica D 84, 212–219 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    T. Mair, C. Warnke, S.C. Müller, Spatio-temporal dynamics in glycolysis. Faraday Discuss. 120, 249–259 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    E. Meléndez-Hevia, T.G. Waddell, R. Heinrich, F. Montero, Theoretical approaches to the evolutionary optimization of glycolysis: chemical analysis. Eur. J. Biochem. 244, 527–543 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Goldbeter, La Vie Oscillatoire au Coeur des Rythmes du Vivant (Odile Jacob, Paris, 2010)Google Scholar
  7. 7.
    J. Lechleiter, S. Girard, D. Clapham, E. Peralta, Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123–126 (1991)Google Scholar
  8. 8.
    J.D. Lechleiter, D.E. Clapham, Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell 69, 283–294 (1992)Google Scholar
  9. 9.
    A.A.P. Leão, Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944)Google Scholar
  10. 10.
    M.A. Dahlem, T. Mair, S.C. Müller, Spatio-temporal aspects of a dynamical disease: waves of spreading depression, in Function and Regulation of Cellular Systems: Experiments and Models, ed. by A. Deutsch, J. Howard, M. Falke, W. Zimmermann, (Birkhäuser, Basel, 2004)Google Scholar
  11. 11.
    M. Lauritzen, Pathophysiology of the migraine aura: the spreading depression therapy. Brain 117, 199–210 (1994)CrossRefGoogle Scholar
  12. 12.
    M. Avoli, C. Drapeau, J. Loevel, R. Pumain, A. Olivier, J.Q. Villemure, Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Ann. Neurol. 30, 580–596 (1991)CrossRefGoogle Scholar
  13. 13.
    H. Martins-Ferreira, G. Oliveira de Castro, Light-scattering changes accompanying spreading depression in isolated retina. J. Neurophysiol. 29, 715–726 (1966)CrossRefGoogle Scholar
  14. 14.
    M.A. Dahlem, R. Graf, A.J. Strong, J.P. Dreier, Y.A. Dahlem, M. Sieber, W. Hanke, K. Podoll, E. Schöll, Two-dimensional wave patterns of spreading depression. Physica D 239, 889–903 (2010)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    S.D. Silberstein, A. Stiles, W.B. Young (eds.), Atlas of Migraine and Other Headaches (Taylor and Francis, London, 2005)Google Scholar
  16. 16.
    K. Lashley, Patterns of cerebral integration indicated by the scotomas of migraine. Arch. Neurol. Psychiatry 46, 331–341 (1941)CrossRefGoogle Scholar
  17. 17.
    P.M. Milner, Note on a possible correspondence between the scotomas of migraine and the spreading depression of Leão Electroencephalography. Clin. Neurophysiol. 10, 705–706 (1958)Google Scholar
  18. 18.
    T. Bonhoeffer, A. Grinvald, Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 420–431 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Dahlem, R. Engelmann, S. Löwel, S.C. Müller, Does the migraine aura reflect cortical organization? Eur. J. Neurosci. 12, 767–770 (2000)CrossRefGoogle Scholar
  20. 20.
    O. Steinbock, S.C. Müller, Control of spiral waves in excitable media by external perturbation, in Handbook of Chaos Control, ed. by H.G. Schuster (Wiley VCH, Weinheim, 1999), pp. 591–614zbMATHGoogle Scholar
  21. 21.
    V.K. Jirsa, W.C. Stacey, P.P. Quilichini, A.I. Ivanov, On the nature of seizure dynamics. Brain 137, 2210–2230 (2014)CrossRefGoogle Scholar
  22. 22.
    W.J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Springer, New York, 2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    K. Takagaki, F.W. Ohl, Coarse-graining to investigate cerebral cortex dynamics, in Complexity and Synergetics, ed. by S.C. Müller, P.J. Plath, G. Radons, A. Fuchs (Springer, Cham, 2018), pp. 289–299CrossRefGoogle Scholar
  24. 24.
    K. Takagaki, C. Zhang, J.-Y. Wu, F.W. Ohl, Flow detection of propagating waves with temporospatial correlation of activity. J. Neurosci. Methods 200, 207–218 (2011)CrossRefGoogle Scholar
  25. 25.
    W. Lytton, Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626–637 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, M. Goodfellow, P. Taylor, G. Baier, Phase space approach for modelling of epileptic dynamic activity. Epilepsis 44, 72–83 (2003)CrossRefGoogle Scholar
  27. 27.
    P.N. Taylor, M. Goodfellow, Y. Wang, G. Baier, Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol. Cybern. 107, 83–94 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Mair
  • Markus A. Dahlem
    • 1
  • Stefan C. Müller
    • 2
    Email author
  1. 1.Medical AffairsBerlinGermany
  2. 2.Institute of PhysicsOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations