Advertisement

A Novel Method for Race Determination of Human Skulls

  • Casper Oakley
  • Li Bai
  • Iman Yi Liao
  • Olasimbo Arigbabu
  • Nurliza Abdullah
  • Mohamad Helmee Mohamad Noor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11188)

Abstract

Race determination of skulls of individuals is a continually growing subject in forensic anthropology. Traditionally, race determination has been conducted either entirely subjectively by qualified forensic anthropologists, or has been conducted through a semi-automated fashion through multivariate discriminant functions. This paper describes a novel method for completely automated race determination of CT scans of skulls, wherein skulls are preprocessed, reduced to a low dimensional model and segregated into one of two racial classes through a classifier. The classifier itself is chosen from a survey conducted against four different classification techniques. This method can both be used as a tool for completely automated race determination, or as decision support for forensic anthropologists. A total of 341 skulls with variance in race have been gathered by the University of Nottingham Malaysia Campus and used to train and test the method. The resultant accuracy of this method is 79%.

Notes

Acknowledgments

The authors would like to thank the Hospital Kuala Lumpur for providing all data used. The research (NMRR-15-1761-2777) has received full ethics approval from the Ministry of Health, Malaysia.

References

  1. 1.
    Sauer, N.J.: Forensic anthropology and the concept of race: if races don’t exist, why are forensic anthropologists so good at identifying them? Soc. Sci. Med. 34(2), 107–111 (1992)CrossRefGoogle Scholar
  2. 2.
    Cartmill, M.: The status of the race concept in physical anthropology. Am. Anthropol. 100, 651–660 (1998)CrossRefGoogle Scholar
  3. 3.
    National Institute of Health: Anthropological views. Accessed 06 Apr 2017Google Scholar
  4. 4.
    Johnson, D.R., O’higgins, P., Moore, W.J., McAndrew, T.J.: Determination of race and sex of the human skull by discriminant function analysis of linear and angular dimensions. Forensic Sci. Int. 41(1–2), 41–53 (1989)CrossRefGoogle Scholar
  5. 5.
    Snow, C.C., Hartman, S., Giles, E., Young, F.A.: Sex and race determination of crania by calipers and computer: a test of the Giles and Elliot discriminant functions in 52 forensic science cases. J. Forensic Sci. 24(2), 448–460 (1979)CrossRefGoogle Scholar
  6. 6.
    Konigsberg, L.W., Algee-Hewitt, B.F.B., Steadman, D.W.: Estimation and evidence in forensic anthropology: sex and race. Am. J. Phys. Anthropol. 139(1), 77–90 (2009)CrossRefGoogle Scholar
  7. 7.
    Ousley, S., Jantz, R.: Fordisc 3. Rechtsmedizin 23(2), 97–99 (2013)CrossRefGoogle Scholar
  8. 8.
    Dibennardo, R., Taylor, J.V.: Multiple discriminant function analysis of sex and race in the postcranial skeleton. Am. J. Phys. Anthropol. 61(3), 305–314 (1983)CrossRefGoogle Scholar
  9. 9.
    Işcan, M.Y.: Forensic anthropology of sex and body size. Forensic Sci. Int. 147, 107–112 (2004)CrossRefGoogle Scholar
  10. 10.
    Jantz, R.L., Mahfouz, M., Shirley, N.R., Fatah, E.A.: Improving sex estimation from crania using 3-dimensional CT scans. Department of Justice (2013)Google Scholar
  11. 11.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)Google Scholar
  12. 12.
    Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Duncan, J., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 29–42. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63046-5_3CrossRefGoogle Scholar
  13. 13.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 2001 Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)Google Scholar
  14. 14.
    Vos, F.M., et al.: A statistical shape model without using landmarks. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 714–717. IEEE (2004)Google Scholar
  15. 15.
    Brett, A.D., Taylor, C.J.: A method of automated landmark generation for automated 3D PDM construction. Image Vis. Comput. 18(9), 739–748 (2000)CrossRefGoogle Scholar
  16. 16.
    Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)zbMATHGoogle Scholar
  17. 17.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)CrossRefGoogle Scholar
  18. 18.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)CrossRefGoogle Scholar
  19. 19.
    Peres-Neto, P.R., Jackson, D.A., Somers, K.M.: How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49(4), 974–997 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fodor, I.K.: A survey of dimension reduction techniques. Cent. Appl. Sci. Comput. Lawrence Livermore Natl. Lab. 9, 1–18 (2002)Google Scholar
  21. 21.
    Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  22. 22.
    Barratt, D.C., et al.: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med. Image Anal. 12(3), 358–374 (2008)CrossRefGoogle Scholar
  23. 23.
    Fleute, M., Lavallée, S.: Building a complete surface model from sparse data using statistical shape models: application to computer assisted knee surgery. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056276CrossRefGoogle Scholar
  24. 24.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)CrossRefGoogle Scholar
  25. 25.
    Luo, L., et al.: Automatic sex determination of skulls based on a statistical shape model. Comput. Math. Methods Med. 2013 (2013)Google Scholar
  26. 26.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefGoogle Scholar
  27. 27.
    Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)CrossRefGoogle Scholar
  28. 28.
    Liaw, A., Wiener, M.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)Google Scholar
  29. 29.
    Kobbelt, L., Campagna, S., Seidel, H.-P.: A general framework for mesh decimation. In: Graphics Interface, vol. 98, pp. 43–50 (1998)Google Scholar
  30. 30.
    Sijbers, J., Postnov, A.: Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys. Med. Biol. 49(14), N247 (2004)CrossRefGoogle Scholar
  31. 31.
    Glover, G.H., Pelc, N.J.: An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med. Phys. 8(6), 799–807 (1981)CrossRefGoogle Scholar
  32. 32.
    Ilayperuma, I.: Evaluation of cephalic indices: a clue for racial and sex diversity. Int. J. Morphol. 29, 112–117 (2011)CrossRefGoogle Scholar
  33. 33.
    Hu, Y., et al.: A hierarchical dense deformable model for 3D face reconstruction from skull. Multimed. Tools Appl. 64(2), 345–364 (2013)CrossRefGoogle Scholar
  34. 34.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, Stanford, CA, vol. 14, pp. 1137–1145 (1995)Google Scholar
  35. 35.
    Cranial features and race. http://johnhawks.net/explainer/laboratory/race-cranium/. Accessed 04 Apr 2017
  36. 36.
    Spradley, M.K., Hefner, J.T., Anderson, B.: Ancestry assessment using random forest modeling. J. Forensic Sci. 59(3), 583–589 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Casper Oakley
    • 1
  • Li Bai
    • 1
  • Iman Yi Liao
    • 2
  • Olasimbo Arigbabu
    • 2
  • Nurliza Abdullah
    • 3
  • Mohamad Helmee Mohamad Noor
    • 3
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK
  2. 2.School of Computer ScienceUniversity of Nottingham Malaysia CampusSemenyihMalaysia
  3. 3.Hospital Kuala LumpurKuala LumpurMalaysia

Personalised recommendations