Advertisement

FFF of Mg-Alloys for Biomedical Application

  • M. Wolff
  • T. Mesterknecht
  • A. Bals
  • T. Ebel
  • R. Willumeit-RömerEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Additive manufacturing is a very promising approach to patient-specific implants. In combination with degradability, individual tissue regeneration could be obtained. Like metal injection moulding (MIM), fused filament fabrication (FFF) of metal powders belongs to binder-based sintering technologies. However, FFF of metal powders does not require an expensive mould, but it offers individual prototyping of sophisticated shaped parts at low costs. FFF of metals is novel and processing of Mg powders is just at the start of development. In the present work, special Mg-alloy-powder-polymer blends were developed to enable manufacturing of flexible filaments and failure-free green parts. Consolidation to final metal parts took place using SF6-free powder metallurgical (PM) sintering technique. Test specimens and implant demonstrator parts were successfully produced. The specimens showed mechanical properties of up to 177 MPa UTS, 123 MPa yield strength and 2.8% elongation at fracture. Thus, the mechanical properties are equivalent to those of as-cast material. Based on these results, FFF appears to be a very promising approach to Mg implant production.

Keywords

Metal injection molding Magnesium Sintering 

References

  1. 1.
    H. E. Friedrich, B. L. Mordike, Springer, Berlin, Heidelberg, Germany, (2006).Google Scholar
  2. 2.
    K. U. Kainer, Wiley-VCH, Weinheim, Germany, (2010).Google Scholar
  3. 3.
    H. Dieringa, N. Hort, K. U. Kainer, Proceedings of LMT 2011, Trans Tech Publications Ltd, Material Science Forum, Vol. 690 (2011).Google Scholar
  4. 4.
    Z. Li, X. Gu, S. Lou, Y, Zheng. The development of binary Mg-Ca alloys for use asbiodegradable materials within bone, Biomaterials 29 (2008) 1329–1344.CrossRefGoogle Scholar
  5. 5.
    M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopaedic biomaterials- a review, Biomaterials 27 (2006), 1728–1734.CrossRefGoogle Scholar
  6. 6.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, Biomaterials 26 (2005) 3557–3563.CrossRefGoogle Scholar
  7. 7.
    F. Witte, J. Reifenrath, P. P. Müller, H. –A. Crostack, J. Nellesen, F. W. Bach, D. Bormann, M. Rudert, Materialwissenschaft und Werkstofftechnik 37 (2006) 504–508.CrossRefGoogle Scholar
  8. 8.
    F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, N. Hort, Biomaterials 28 (2007) 2163–2174.CrossRefGoogle Scholar
  9. 9.
    F. Witte, H. Ulrich, M. Rudert, E. Willbold, Journal of Biomedical Materials Research 81A (2007) 748–756.Google Scholar
  10. 10.
    F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kraese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27 (2006) 1013–1018.CrossRefGoogle Scholar
  11. 11.
    F. Witte, H. Ulrich, C. Palm, E. Willbold, Journal of Biomedical Materials Research 81A (2007) 757–765.Google Scholar
  12. 12.
    G. Poumarat, P. Squire, Biomaterials 14 (1993) 337–349.CrossRefGoogle Scholar
  13. 13.
    A. R. Cunha et al, International Journal of Hypertension, Hindawi Publishing Co. (2012) Art.-ID 754250.Google Scholar
  14. 14.
    C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windbergen, F. Thorey, F. Witte. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling, Acta Biomaterialica 6 (2010) 1861–68.Google Scholar
  15. 15.
    F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V.Kraese, A. Pisch, F. Beckmann, H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials 27 (2006) 1013–1018.CrossRefGoogle Scholar
  16. 16.
    M. Wolff, M. Dahms, T. Ebel. Sintering of Magnesium, Advanced Engineering Materials 12 (2010) 829–836.CrossRefGoogle Scholar
  17. 17.
    M. Wolff, T. Guelck, T. Ebel. Sintering of Mg and Mg-Ca alloys for biomedical applications, Euro PM2009 Proceed. 2 (2009) 417–422.Google Scholar
  18. 18.
    M. Wolff, C. Bischof, M. Dahms, T. Ebel, T. Klassen, 9th International Conference on Magnesium and their Applications, Vancouver, Canada, July 8–12, (2012) page 102.Google Scholar
  19. 19.
    M. Wolff, J. G. Schaper, M. Dahms, T. Ebel, K.U. Kainer and T. Klassen, Powder Metallurgy, Vol. 57 No. 5 (2014) 331–340.CrossRefGoogle Scholar
  20. 20.
    M. Wolff, J. G. Schaper, M. R. Suckert, M. Dahms, F. Feyerabend, T. Ebel, R. Willumeit-Römer, T. Klassen, Metal Injection Molding - MIM of Magnesium and its Alloys, Metals, Vol. 6 No. 118 (2016),  https://doi.org/10.3390/met 6050118.
  21. 21.
    M. Wolff, J. G. Schaper, M. R. Suckert, M. Dahms,, T. Ebel, R. Willumeit-Römer, T. Klassen, Magnesium powder injection molding (MIM) of orthopedic implants fpr biomedical application, JOM, Vol.68, No4. (2016)  https://doi.org/10.1007/s11837-016-1837-xCrossRefGoogle Scholar
  22. 22.
    B. Wiese, The Effect of CaO on Magnesium and Magnesium Calcium Alloys, Dissertation, Clausthal University of Technology (2016).Google Scholar
  23. 23.
    M. Wolff, J. G. Schaper, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen (2018) Metal Injection Molding (MIM) of Mg-Alloys. In: TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, DOI: https://doi.org/10.1007/978-3-319-72526-0_22.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. Wolff
    • 1
  • T. Mesterknecht
    • 1
  • A. Bals
    • 1
  • T. Ebel
    • 1
  • R. Willumeit-Römer
    • 1
    Email author
  1. 1.Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal ResearchInstitute of Materials Research, Div. Metallic BiomaterialsGeesthachtGermany

Personalised recommendations