Advertisement

Investigation of the Evolution of the Microstructure in the Directionally Solidified Long-Period Stacking-Ordered (LPSO) Magnesium Alloy as a Function of the Temperature

  • Daria Drozdenko
  • Kristián MáthisEmail author
  • Stefanus Harjo
  • Wu Gong
  • Kazuya Aizawa
  • Michiaki Yamasaki
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The influence of the LPSO-phase orientation and the temperature on the deformation mechanisms of directionally solidified Mg–Zn–Y magnesium alloy has been investigated by neutron diffraction and acoustic emission (AE) technique. The results indicate that the kinking mechanism and activation of non-basal slip are significantly temperature and orientation dependent with respect to the loading axis.

Keywords

Magnesium Long-period stacking-ordered structure Neutron diffraction Acoustic emission Non-basal slip 

Notes

Acknowledgements

This research was funded by Czech Science Foundation grant number GB14–36566 G. K.M. acknowledges the support of the Operational Programme Research, Development and Education, The Ministry of Education, Youth and Sports (OP RDE, MEYS) [CZ.02.1.01/0.0/0.0/16_013/0001794].

References

  1. 1.
    Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J. Mater. Res. 16:1894–1900CrossRefGoogle Scholar
  2. 2.
    Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa. Mater. Trans 42:1172–1176Google Scholar
  3. 3.
    Kawamura Y, Kasahara T, Izumi S, Yamasaki M (2006) Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure. Scripta Mater. 55:453–456.CrossRefGoogle Scholar
  4. 4.
    Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y (2011) Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy, Acta Mater 59:3646–3658.CrossRefGoogle Scholar
  5. 5.
    Kishida K, Inoue A, Yokobayashi H, Inui H (2014) Deformation twinning in a Mg–Al–Gd ternary alloy containing precipitates with a long-period stacking-ordered (LPSO) structure. Scripta Mater. 89:25–28.CrossRefGoogle Scholar
  6. 6.
    Garcés G, Máthis K. Medina J, Horváth K, Drozdenko D, Oñorbe E, Dobroň.P, Pérez P, Klaus M, Adeva P (2018) Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-YZn alloys containing LPSO phase under different loading conditions, Int. J. Plasticity 106: 107–128.CrossRefGoogle Scholar
  7. 7.
    Hagihara K, Yokotani N, Umakoshi Y (2010) Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics 18:267–276.CrossRefGoogle Scholar
  8. 8.
    Máthis K, Chmelík F, Janeček M, Hadzima B, Trojanová Z, Lukáč P (2006) Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique Acta Mater. 54:5361–5366CrossRefGoogle Scholar
  9. 9.
    Mayama T, Noda M, Chiba R, Kuroda M (2011) Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plasticity 27:1916–1935.CrossRefGoogle Scholar
  10. 10.
    Matsumoto R, Uranagase M, Miyazaki N (2013) Molecular dynamic analyses of deformation behavior of long-period-stacking-ordered structures. Mater. Trans. 54:686–692.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Daria Drozdenko
    • 1
    • 3
  • Kristián Máthis
    • 2
    • 3
    Email author
  • Stefanus Harjo
    • 4
  • Wu Gong
    • 4
  • Kazuya Aizawa
    • 5
  • Michiaki Yamasaki
    • 1
  1. 1.Magnesium Research Center, Kumamoto UniversityKumamotoJapan
  2. 2.Nuclear Physics Institute of the CASŘežCzech Republic
  3. 3.Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic
  4. 4.J-PARC Center, Japan Atomic Energy AgencyTokai-Mura, Naka-Gun, IbarakiJapan
  5. 5.Elements Strategy Initiative for Structural MaterialsKyoto UniversityKyotoJapan

Personalised recommendations