Advertisement

Multiaxial Cyclic Response of Low Temperature Closed-Die Forged AZ31B Mg Alloy

  • D. Toscano
  • S. K. ShahaEmail author
  • B. Behravesh
  • H. Jahed
  • B. Williams
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The present study investigates the multiaxial fatigue behavior of extruded AZ31B Mg alloy forged at 250 °C. Fatigue samples were tested under axial–shear loading at phase angles of 0°, 45° and 90°. The microstructural analysis identified dynamic recrystallization, which resulted in a degree of grain refinement of the forged microstructure in addition to a modification of the original extrusion texture. Quasi-static testing showed that the forged material retained the high yield strength of the extrusion condition with a substantial increase in failure strain. Under multiaxial loading, cyclic axial strain significantly affected the shear hysteresis behavior while the effect of cyclic shear strain on the axial hysteresis was less pronounced. Despite a notable change in shear hysteresis shape, fatigue life was only slightly affected by the changes in phase angle.

Keywords

Magnesium alloy Forging Microstructure Texture Multiaxial fatigue 

Notes

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Automotive Partnership Canada (APC) program under APCPJ 459269–13 grant with contributions from Multimatic Technical Centre, Ford Motor Company, and Centerline Windsor are acknowledged. The authors would also like to thank J. McKinley and L. Blaga of CanmetMATERIALS for assistance with the forging trials.

References

  1. 1.
    S. B. Dayani, S. K. Shaha, R. Ghelichi, J. F. Wang, and H. Jahed, “The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy,” Surf. Coatings Technol., vol. 337, no. June 2017, pp. 150–158, 2018.CrossRefGoogle Scholar
  2. 2.
    M. S. Bhuiyan, Y. Mutoh, T. Murai, and S. Iwakami, “Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5% NaCl environment,” Eng. Fract. Mech., vol. 77, no. 10, pp. 1567–1576, 2010.CrossRefGoogle Scholar
  3. 3.
    A. Chapuis and J. H. Driver, “Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals,” Acta Mater., vol. 59, no. 5, pp. 1986–1994, 2011.CrossRefGoogle Scholar
  4. 4.
    L. Wang, G. Huang, T. Han, E. Mostaed, F. Pan, and M. Vedani, “Effect of twinning and detwinning on the spring-back and shift of neutral layer in AZ31 magnesium alloy sheets during V-bend,” Mater. Des., vol. 68, pp. 80–87, 2015.CrossRefGoogle Scholar
  5. 5.
    A. Jain, O. Duygulu, D. W. Brown, C. N. Tomé, and S. R. Agnew, “Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet,” Mater. Sci. Eng. A, vol. 486, no. 1–2, pp. 545–555, 2008.CrossRefGoogle Scholar
  6. 6.
    M. Graf, M. Ullmann, and R. Kawalla, “Property-oriented Production of Forged Magnesium Components,” Mater. Today Proc., vol. 2, pp. S76–S84, 2015.CrossRefGoogle Scholar
  7. 7.
    Y. Wu, Q. Chen, and X. Xia, “Isothermal Precision forging of magnesium alloy components with high performance,” Procedia Eng., vol. 207, pp. 896–901, 2017.CrossRefGoogle Scholar
  8. 8.
    A. Gryguc et al., “Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys,” Int. J. Fatigue, vol. 116, no. June, pp. 429–43, 2018.Google Scholar
  9. 9.
    D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, B. Williams, and X. Su, “Influence of low temperature forging on microstructure and low cycle fatigue behavior of cast AZ31B Mg alloy,” Miner. Met. Mater. Ser., vol. Part F7, pp. 267–273, 2018.Google Scholar
  10. 10.
    S. M. H. Karparvarfard et al., “Characterization of Semi-Closed Die-Forged ZK60 Mg Alloy Extrusion,” Magnes. Technol. 2017. Springer Int. Publ., pp. 329–334, 2017.Google Scholar
  11. 11.
    A. Gryguc, S. K. Shaha, S. B. Behravesh, H. Jahed, M. Wells, and B. Williams, “Compression Behaviour of Semi-closed Die Forged AZ80 Extrusion,” Charact. Miner. Met. Mater. 2017, pp. 361–369, 2017.Google Scholar
  12. 12.
    D. Toscano, S. Shaha, B. Behravesh, B. Williams, and H. Jahed, “Structural Application of Magnesium Alloys in Vehicle Suspension Components : Effect of Forging on Microstructure and Fatigue Response,” Mg 2018 Proc., vol. In-Press, pp. 1–6, 2018.Google Scholar
  13. 13.
    D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, and B. Williams, “Effect of forging on the low cycle fatigue behavior of cast AZ31B Alloy,” Mater. Sci. Eng. A, vol. 706, pp. 342–356, 2017.CrossRefGoogle Scholar
  14. 14.
    G. Z. Quan, Y. Shi, Y. X. Wang, B. S. Kang, T. W. Ku, and W. J. Song, “Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data,” Mater. Sci. Eng. A, vol. 528, no. 28, pp. 8051–8059, 2011.CrossRefGoogle Scholar
  15. 15.
    I. Ulacia et al., “Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates,” 4th Int. Conf. High Speed Form., pp. 189–197, 2010.Google Scholar
  16. 16.
    D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, and B. Williams, “Effect of Forging on Microstructure, Texture, and Uniaxial Properties of Cast AZ31B Alloy,” J. Mater. Eng. Perform., vol. 26, no. 7, pp. 3090–3103, 2017.CrossRefGoogle Scholar
  17. 17.
    M. R. Barnett, “Twinning and the ductility of magnesium alloys. Part II. ‘Contraction’ twins,” Mater. Sci. Eng. A, vol. 464, no. 1–2, pp. 8–16, 2007.CrossRefGoogle Scholar
  18. 18.
    H. Somekawa, A. Kinoshita, K. Washio, and A. Kato, “Enhancement of room temperature stretch formability via grain boundary sliding in magnesium alloy,” Mater. Sci. Eng. A, vol. 676, pp. 427–433, 2016.CrossRefGoogle Scholar
  19. 19.
    J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, “Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K,” Mater. Trans., vol. 44, no. 4, pp. 445–451, 2003.CrossRefGoogle Scholar
  20. 20.
    A. A. Roostaei and H. Jahed, “Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling,” Mater. Sci. Eng. A, vol. 670, pp. 26–40, 2016.CrossRefGoogle Scholar
  21. 21.
    A. A. Roostaei and H. Jahed, “Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion,” Int. J. Fatigue, vol. 97, pp. 150–161, 2017.CrossRefGoogle Scholar
  22. 22.
    J. Albinmousa and H. Jahed, “Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion,” Int. J. Fatigue, vol. 67, pp. 103–116, 2014.CrossRefGoogle Scholar
  23. 23.
    F. Ellyin, K. Golos, and Z. Xia, “In-Phase and Out-of-Phase Multiaxial Fatigue,” J. Eng. Mater. Technol., vol. 113, no. 1, pp. 112–118, 1991.CrossRefGoogle Scholar
  24. 24.
    J. Albinmousa, H. Jahed, and S. Lambert, “Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy,” Int. J. Fatigue, vol. 33, no. 11, pp. 1403–1416, 2011.CrossRefGoogle Scholar
  25. 25.
    H. Jahed, A. Varvani-Farahani, M. Noban, and I. Khalaji, “An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions,” Int. J. Fatigue, vol. 29, no. 4, pp. 647–655, 2007.CrossRefGoogle Scholar
  26. 26.
    Y. Xiong, Q. Yu, and Y. Jiang, “Multiaxial fatigue of extruded AZ31B magnesium alloy,” Mater. Sci. Eng. A, vol. 546, pp. 119–128, 2012.CrossRefGoogle Scholar
  27. 27.
    Q. Yu, J. Zhang, Y. Jiang, and Q. Li, “Multiaxial fatigue of extruded AZ61A magnesium alloy,” Int. J. Fatigue, vol. 33, no. 3, pp. 437–447, 2011.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • D. Toscano
    • 1
  • S. K. Shaha
    • 1
    Email author
  • B. Behravesh
    • 1
  • H. Jahed
    • 1
  • B. Williams
    • 2
  1. 1.Department of Mechanical & Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.CanmetMATERIALS, Natural Resources CanadaHamiltonCanada

Personalised recommendations