Advertisement

Inverse Optimization to Design Processing Paths to Tailor Formability of Mg Alloys

  • Wahaz Nasim
  • Joshua S. Herrington
  • Amine A. Benzerga
  • Jyhwen Wang
  • Ibrahim KaramanEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Due to the poor formability of Mg alloys at low temperatures, robust methods are needed to intelligently tailor the formability of Mg alloys for given forming processes such that specific parts can be successfully manufactured. One method of tailoring formability comes from altering the texture of Mg alloys. In our recent works, an invariant parameter called the Anisotropy Effect on Ductility (AED) has been proven to correctly portray physical formability measurements derived from tension and compression tests on textured AZ31 Mg alloy. In the present work, a Visco-Plastic Self-Consistent (VPSC) crystal plasticity modeling has been used to simulate Equal Channel Angular Pressing as a processing method to alter texture using various routes. In order to create an AZ31 Mg alloy with a particular AED parameter or formability, an automated inverse optimization strategy has been used to predict the routes needed to attain target amount of formability required by applications.

Keywords

Visco Plastic Self-Consistent (VPSC) model Formability Equal Channel Angular Pressing Inverse method Optimization Mg AZ31 

References

  1. 1.
    W.B. Hutchinson, M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 2010. 63(7): p. 737–740.CrossRefGoogle Scholar
  2. 2.
    S. Yi, J. Bohlen, F. Heinman, D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Materialia, 2010. 58(2): p. 592–605.CrossRefGoogle Scholar
  3. 3.
    E. Dogan, M.W. Vaughan, S.J. Wang, I. Karman, G. Proust, Role of starting texture and deformation modes on low-temperature shear formability and shear localization of Mg–3Al–1Zn alloy. Acta Materialia, 2015. 89: p. 408–422.CrossRefGoogle Scholar
  4. 4.
    M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 1981. 12(3): p. 409–418.CrossRefGoogle Scholar
  5. 5.
    N. Stanford, M.R. Barnett, Solute strengthening of prismatic slip, basal slip and {101¯2} twinning in Mg and Mg–Zn binary alloys. International Journal of Plasticity, 2013. 47: p. 165–181.CrossRefGoogle Scholar
  6. 6.
    S. Basu, E. Dogan, B. Kondori, I. Karaman, A. A. Benzerga, Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys. Acta Materialia, 2017. 131: p. 349–362.CrossRefGoogle Scholar
  7. 7.
    M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science, 2001. 36(12): p. 2835–2843.CrossRefGoogle Scholar
  8. 8.
    H.K. Lin, J.C. Huang, and T.G. Langdon, Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Materials Science and Engineering: A, 2005. 402(1): p. 250–257.CrossRefGoogle Scholar
  9. 9.
    E. Dogan, I. Karaman, G. Ayoub, G. Kridli, Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets. Materials Science and Engineering: A, 2014. 610: p. 220–227.CrossRefGoogle Scholar
  10. 10.
    Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. Journal of Materials Processing Technology, 2001. 117(3): p. 288–292.CrossRefGoogle Scholar
  11. 11.
    Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Applied Physics Letters, 2002. 80(13): p. 2395–2397.CrossRefGoogle Scholar
  12. 12.
    F. Kang, J.T. Wang, and Y. Peng, Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy. Materials Science and Engineering: A, 2008. 487(1): p. 68–73.CrossRefGoogle Scholar
  13. 13.
    A. Jain, S.R. Agnew, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Materials Science and Engineering: A, 2007. 462(1): p. 29–36.CrossRefGoogle Scholar
  14. 14.
    S.R. Agnew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity, 2005. 21(6): p. 1161–1193.CrossRefGoogle Scholar
  15. 15.
    A. Ostapovets, P. Molnár, and A. Jäger, Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy. Journal of Materials Science, 2013. 48(5): p. 2123–2134.CrossRefGoogle Scholar
  16. 16.
    R. Figueiredo, I. J. Beyerlin, A. P. Zhilyaev, T. G. Langdon, Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles. Materials Science and Engineering: A, 2010. 527(7): p. 1709–1718.CrossRefGoogle Scholar
  17. 17.
    C.F. Gu, L.S. Toth, D.P. Field, J. J. Fundenberger, Y.D. Zheng, Room temperature equal-channel angular pressing of a magnesium alloy. Acta Materialia, 2013. 61(8): p. 3027–3036.CrossRefGoogle Scholar
  18. 18.
    W. Wen, M. Borodachenkova, C. N. Tome, G. Vincze, E. F. Rauch, F. Barlat, J. J. Gracio, Mechanical behavior of Mg subjected to strain path changes: Experiments and modeling. International Journal of Plasticity, 2015. 73: p. 171–183.CrossRefGoogle Scholar
  19. 19.
    A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture. Acta Materialia, 2016. 107: p. 424–483.CrossRefGoogle Scholar
  20. 20.
    A.A. Benzerga, J. Besson, Plastic potentials for anisotropic porous solids. European Journal of Mechanics - A/Solids, 2001. 20(3): p. 397–434.CrossRefGoogle Scholar
  21. 21.
    M.W. Vaughn, W.N., E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1zn. Manuscript submitted to Acta Materialia 2018.Google Scholar
  22. 22.
    R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica et Materialia, 1993. 41(9): p. 2611–2624.CrossRefGoogle Scholar
  23. 23.
    S. Choi, E. Shin, B. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Materialia, 2007. 55(12): p. 4181–4192.CrossRefGoogle Scholar
  24. 24.
    F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, Gnäupel-Herlod, Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. International Journal of Plasticity, 2015. 68: p. 1–20.CrossRefGoogle Scholar
  25. 25.
    H.S. Kim, M.H. Seo, and S.I. Hong, On the die corner gap formation in equal channel angular pressing. Materials Science and Engineering: A, 2000. 291(1): p. 86–90.CrossRefGoogle Scholar
  26. 26.
    B. Kondori, Y. Madi, J. Besson, A. A. Benzerga, Evolution of the 3D plastic anisotropy of HCP metals: Experiments and modeling. International Journal of Plasticity, 2018.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Wahaz Nasim
    • 1
  • Joshua S. Herrington
    • 2
  • Amine A. Benzerga
    • 2
  • Jyhwen Wang
    • 3
  • Ibrahim Karaman
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Engineering Technology and Industrial Distribution Texas A&M UniversityCollege StationUSA

Personalised recommendations