Influence of Thermomechanical Treatment on Tension–Compression Yield Asymmetry of Extruded Mg–Zn–Ca Alloy

  • P. DobroňEmail author
  • M. Hegedüs
  • J. Olejňák
  • D. Drozdenko
  • K. Horváth
  • J. Bohlen
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Thermomechanical treatment consisting of pre-compression and isothermal aging at 150 °C for 16 h was applied to the extruded Mg–Zn–Ca (ZX10) alloy in order to reduce tension–compression yield asymmetry and improve mechanical properties via strengthening mechanism. With respect to the initial texture of the alloy, pre-compression leads to a formation of extension twins. A solute segregation and precipitation along twin boundaries is realized during a subsequent isothermal aging. After thermomechanical treatment, a solute solution and precipitation hardening contribute to the strengthening of the alloy. Active deformation mechanisms were monitored during compression or tension using the acoustic emission technique.


Magnesium Pre-compression Twinning Precipitation Acoustic emission 



This work received support from the Czech Science Foundation under grant No. 17-21855S; the Grant Agency of the Charles University under grant Nr. 1262217; the Operational Programme Research, Development and Education, The Ministry of Education, Youth and Sports (OP RDE, MEYS) under the Grant CZ.02.1.01/0.0/0.0/16_013/0001794.


  1. 1.
    Bettles, C.J.; Gibson, M.A. Current wrought magnesium alloys: Strengths and weaknesses. JOM 2005, 57, 46–49. Scholar
  2. 2.
    Dobron, P.; Drozdenko, D.; Olejnak, J.; Hegedus, M.; Horvath, K.; Vesely, J.; Bohlen, J.; Letzig, D. Compressive yield stress improvement using thermomechanical treatment of extruded mg-zn-ca alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2018, 730, 401–409. Scholar
  3. 3.
    Drozdenko, D.; Bohlen, J.; Yi, S.; Minarik, P.; Chmelik, F.; Dobron, P. Investigating a twinning-detwinning process in wrought mg alloys by the acoustic emission technique. Acta Materialia 2016, 110, 103–113. Scholar
  4. 4.
    Bohlen, J.; Dobron, P.; Nascimento, L.; Parfenenko, K.; Chmelik, F.; Letzig, D. The effect of reversed loading conditions on the mechanical behaviour of extruded magnesium alloy az31. Acta Physica Polonica A 2012, 122, 444–449.CrossRefGoogle Scholar
  5. 5.
    Drozdenko, D.; Bohlen, J.; Chmelik, F.; Lukac, P.; Dobron, P. Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2016, 650, 20–27. Scholar
  6. 6.
    Dobroň, P.; Balík, J.; Chmelík, F.; Illková, K.; Bohlen, J.; Letzig, D.; Lukáč, P. A study of mechanical anisotropy of mg-zn-rare earth alloy sheet. Journal of Alloys and Compounds 2014, 588, 628–632. Scholar
  7. 7.
    Mathis, K.; Capek, J.; Clausen, B.; Krajnak, T.; Nagarajan, D. Investigation of the dependence of deformation mechanisms on solute content in polycrystalline mg-al magnesium alloys by neutron diffraction and acoustic emission. Journal of Alloys and Compounds 2015, 642, 185–191. Scholar
  8. 8.
    Horvath, K.; Drozdenko, D.; Mathis, K.; Bohlen, J.; Dobron, P. Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of mg-zn-zr alloy. Journal of Alloys and Compounds 2016, 680, 623–632. Scholar
  9. 9.
    Vinogradov, A.; Vasilev, E.; Linderov, M.; Merson, D. In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2016, 676, 351–360. Scholar
  10. 10.
    Oh, J.C.; Ohkubo, T.; Mukai, T.; Hono, K. Tem and 3dap characterization of an age-hardened mg–ca–zn alloy. Scripta Materialia 2005, 53, 675–679. Scholar
  11. 11.
    Oh-ishi, K.; Watanabe, R.; Mendis, C.L.; Hono, K. Age-hardening response of mg–0.3at.%ca alloys with different zn contents. Materials Science and Engineering: A 2009, 526, 177–184. Scholar
  12. 12.
    Gao, X.; Zhu, S.M.; Muddle, B.C.; Nie, J.F. Precipitation-hardened mg–ca–zn alloys with superior creep resistance. Scripta Materialia 2005, 53, 1321–1326. Scholar
  13. 13.
    Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio for advanced ceramics by impulse excitation of vibration. Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration 1994.Google Scholar
  14. 14.
    Heiple, C.R.; Carpenter, S.H. Acoustic emission produced by deformation of metals and alloys-a review: Part II. J. Acoust. Emission 1987, 6, 215–237.Google Scholar
  15. 15.
    Toronchuk, J.P. Acoustic emission during twinning of zinc single crystals. Materials Evaluation 1977, 35, 51–53.Google Scholar
  16. 16.
    Vinogradov, A.; Vasilev, E.; Seleznev, M.; Máthis, K.; Orlov, D.; Merson, D. On the limits of acoustic emission detectability for twinning. Materials Letters 2016, 183, 417–419. Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • P. Dobroň
    • 1
    Email author
  • M. Hegedüs
    • 1
  • J. Olejňák
    • 1
  • D. Drozdenko
    • 1
    • 2
  • K. Horváth
    • 1
    • 3
  • J. Bohlen
    • 4
  1. 1.Department of Physics of MaterialsCharles UniversityPrague 2Czech Republic
  2. 2.Magnesium Research CenterKumamoto UniversityKumamotoJapan
  3. 3.Nuclear Physics InstituteThe Czech Academy of SciencesŘežCzech Republic
  4. 4.MagIC - Magnesium Innovation CentreHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations