Advertisement

Effects of Radiations on the Properties of Polycarbonate

  • K. HareeshEmail author
  • Ganesh Sanjeev
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The exposure of the polymer to radiation results in modification on chemical and physical properties of the polymer. Whenever radiation passes through polymer, the drastic changes in the optical, electrical, thermal, chemical, structural, surface morphological, mechanical and rheological properties due to chain scission, chain aggregation, cross-linking, gas evolution etc. The chain scission process results in the decreases of molecular weight, whereas cross-linking process increases the molecular weight. This chapter deals with the changes in the properties of PC due to the effect of the radiation along with the detailed schematic mechanism.

Keywords

Radiations Polycarbonate Cross-linking Free volume Chemical properties 

References

  1. 1.
    John FK, Richard EB (1964) Effects of radiation on materials and components. Reinhold Publishing Corporation, LondonGoogle Scholar
  2. 2.
    Pietro PJCOS, Patricia LBA, Leopoldo BBS, Elmo SA (2017) Rad Phys Chem 130:123Google Scholar
  3. 3.
    Claeys C, Simoen E (2002) In: Hull R, Osgood RM, Parisi J (eds) Radiation effects in advanced semiconductor materials and devices. Springer, New York, Berlin, HeidelbergGoogle Scholar
  4. 4.
    Clough RL (2001) Nucl Instr and Meth B 185:8CrossRefGoogle Scholar
  5. 5.
    Hareesh K, Pandey AK, Rao V, Sanjeev G (2013) 22:341Google Scholar
  6. 6.
    Balazant E, Betz N, Bouffard S (1995) Nucl Instr and Meth B 105:46CrossRefGoogle Scholar
  7. 7.
    Kumar V, Sonkawade RG, Dhaliwala AS (2012) Nucl Instr and Meth B 290:59CrossRefGoogle Scholar
  8. 8.
    Hareesh K, Sen Pintu, Bhat Ravishankar, Bhargavi R, Nair Geetha G, Sangappa, Sanjeev Ganesh (2013) Vacuum 91:1CrossRefGoogle Scholar
  9. 9.
    Kumar V, Sonkawade RG, Chakarvarti SK, Kulriya P, Kant K, Singh NL et al (2011) Vacuum 86:275CrossRefGoogle Scholar
  10. 10.
    Kumar V, Sonkawade RG, Dhaliwala AS (2012) Nucl Instr Meth B 287:4CrossRefGoogle Scholar
  11. 11.
    Ali SA, Kumar R, Singh F, Kulriya PK, Prasad R (2010) Nucl Instr Meth B 268:1813CrossRefGoogle Scholar
  12. 12.
    Joshi RP, Hareesh K, Bankar A, Sanjeev G, Asokan K, Kanjilal D, Dahiwale SS, Bhoraskar VN, Dhole SD (2016) Nucl Instr Meth B 384:6CrossRefGoogle Scholar
  13. 13.
    Dwaikat N, Sato F, Kato Y, Iida T (2008) Nucl Instr Meth B 584:353CrossRefGoogle Scholar
  14. 14.
    Chapiro A (1998) Nucl Instr Meth B 32:111CrossRefGoogle Scholar
  15. 15.
    Sood DD, Reddy AVR, Ramamoorthy N (2004) Fundamentals of radiochemistry. Indian Association of Nuclear Chemists and Allied Scientists, Mumbai, IndiaGoogle Scholar
  16. 16.
    Schiwietz G, Luderer E, Xiao G, Grande PL (2001) Nucl Instr and Meth B 175–177:1CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Frommer JE, Chance RR (1986) Electrical conducting polymers in encyclopedia of polymer science and engineeringm, vol 5. Wiley, New York, p 462Google Scholar
  19. 19.
    GE plastics “LEXAN resin innovation day” inspires imaginative thinking for Newyork, Allbusiness.com, from Business Wire, 29 Jan 2003Google Scholar
  20. 20.
  21. 21.
  22. 22.
    Hareesh K, Ranganathaiah C, Ramya P, Bhargavi R, Nair Geetha G, Sangappa, Sanjeev G (2010) J Appl Poly Sci 127:2010CrossRefGoogle Scholar
  23. 23.
    Zimmerman KA, Langford SC, Dickinson JT, Dion RP (1993) J Polym Sci, Part B Polym Phys 31:1229CrossRefGoogle Scholar
  24. 24.
    Kent BA (1980) Polymer 21:936CrossRefGoogle Scholar
  25. 25.
    Hama Y, Shinohara K (1970) J Polym Sci Part A-1 Polym Chem 8:651CrossRefGoogle Scholar
  26. 26.
    Torikai A, Takahisa M, Kenji F (1984) Polym Photochem 4:255CrossRefGoogle Scholar
  27. 27.
    La Mantia FP, Acierno D (1984) Polym Photochem 4:271CrossRefGoogle Scholar
  28. 28.
    Suvegh K, Ranogajec F, Komor-Ranogajec M, Talas E, Ovai M, Vertes C (1992) Mater Sci Forum 105–110:1729CrossRefGoogle Scholar
  29. 29.
    Dyer John R (1994) Applications of absorption spectroscopy of organic compounds. Prentice-Hall Inc., NewJersyGoogle Scholar
  30. 30.
    Srivastava AK, Virk HS (2000) J Polym Mater 17:325Google Scholar
  31. 31.
    Saha A, Chakraborty V, Chintalapudi SN (2000) Nucl Instr Meth B 168:245CrossRefGoogle Scholar
  32. 32.
    Migahed MD, Bakr NA (1994) J Polym Mater 11:129Google Scholar
  33. 33.
    Carmen A, Arquimedes K, Rosestela P, Gema G, Nohemy D, Jeanette G, Yanixia S (2006) Nucl Instr Meth B 247:331CrossRefGoogle Scholar
  34. 34.
    Buttafava A, Consolati G, Di Landro L, Mariani M (2002) Polymer 43:7477CrossRefGoogle Scholar
  35. 35.
    Velitchkova K, Krezhov K, Balabanov S (2000) Vacuum 58:531CrossRefGoogle Scholar
  36. 36.
    Wang YQ, Curry M, Tanenner E, Dobson N, Giedd RE (2004) Nucl Instr Meth B 219:798CrossRefGoogle Scholar
  37. 37.
    Singh NL, Shah Nilam, Desai CF, Singh KP, Arora SK (2004) Radiat Effect defect Solids 159:475CrossRefGoogle Scholar
  38. 38.
    Jonscher AK (1997) Nature 267:673CrossRefGoogle Scholar
  39. 39.
    Vishnuvardhan TK, Kulkarni VR, Basavraja C, Raghavendra SC (2006) Bull Mat Sci 29:77CrossRefGoogle Scholar
  40. 40.
    Reheem AMA, Atta A, Maksoud MIAA (2016) Rad Phys Chem 127:269CrossRefGoogle Scholar
  41. 41.
    Sinha D, Dwivedi KK (2003) Radiat Meas 36:713CrossRefGoogle Scholar
  42. 42.
    Aruldhas G (2004) Molecular structure and spectroscopy. Prentice-Hall of India, New DelhiGoogle Scholar
  43. 43.
    Gagnadre C, Decossas JL, Vareille JC (1993) Nucl Instr Meth B 73:48CrossRefGoogle Scholar
  44. 44.
    Mallon PE, Jean YC, Haung CM, Chen H, Gradwell MHS (2000) Polym Report 41:1124Google Scholar
  45. 45.
    Singh Surinder, Prasher Sangeeta (2005) Radiat Meas 40:50CrossRefGoogle Scholar
  46. 46.
    Robertson J, O’ Reilly EP (1987) Phys Rev B 35:2946CrossRefGoogle Scholar
  47. 47.
    Singh L, Samra KS, Singh R (2007) Nucl Instr Meth B 255:350CrossRefGoogle Scholar
  48. 48.
    Svorcik V, Proskova K, Hnatowicz V, Arenhoz E, Kluge A (1999) Poly Degrad Stab 65:131CrossRefGoogle Scholar
  49. 49.
    Svorcik V, Arenhoz E, Rybka V, Hnatowicz V (1997) Nucl Instr Meth B 122:663CrossRefGoogle Scholar
  50. 50.
    Manso M, Valsesia A, Lejeune M, Gilliland D, Ceceone G, Rossi F (2005) Acta Biomater 1:431CrossRefGoogle Scholar
  51. 51.
    Ryuto H, Ichihashi G, Takeuchi M, Takaoka GH (2013) Vacuum 87:119CrossRefGoogle Scholar
  52. 52.
    Golden JH, Hazell Ea (1963) J Polym Sci A 1:1671Google Scholar
  53. 53.
    Wu T, Lee S (1994) J Polym Sci Part B Polym Phy 32:2055CrossRefGoogle Scholar
  54. 54.
    Naylor SM, Ricardo PW, Joao CMS (2007) Poly Test 26:315CrossRefGoogle Scholar
  55. 55.
    Araujo ES, Khoury HJ, Silveira SV (1998) Radiat Phys Chem 53:79CrossRefGoogle Scholar
  56. 56.
    Chen J, Czayka M, Roberto MU (2005) Radiat Phys Chem 74:31CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of PhysicsREVA UniversityBangaloreIndia
  2. 2.School of PhysicsUniversity of Western AustraliaPerthAustralia
  3. 3.Microtron Centre, Department of Studies in PhysicsMangalore UniversityMangaloreIndia

Personalised recommendations