Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures

  • J. Hazarika
  • A. KumarEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


This chapter presents the basic concepts of conducting or π-conjugated polymers and their different nanostructures and physico-chemical properties, which ushered in a new era of functional organic materials with potential applications. Most importantly, they can replace the traditional metallic conductors owing to their excellent properties of high conductivity, thermal stability, light weight, low corrosion, high flexibility, ease of synthesis and low cost. The first studied conducting polymer was polyacetylene, and in the last two decades, the most extensively studied conducting polymers are polyaniline (PAni), polypyrrole (PPy) and polythiophine (PTh) and their derivatives owing to their interesting physico-chemical properties. Irradiation on polymers with energetic heavy ions is used to tailor their different physico-chemical properties. The energetic heavy ion irradiation-induced modifications on various properties of polymers depends on various parameters viz. type of energy transferred (i.e., nuclear or electronic) to the target, species of ion and ion fluences. The ion-matter interaction with low energy (eV to keV) range causes implantation of the ions, while ions with high energy (keV to MeV) interaction cause irreversible structural modification along the cylindrical ion track, which is of the order of few nanometers in diameter. The fundamental aspects of ion-solid interaction, different related parameters and models governing the ion-solid interaction have been described in details in this chapter. PPy nanotubes, potential candidate of highly conducting π-conjugated polymers, have been chosen for irradiation at different ion fluences to enhance their structural, morphological, electrical, optical and thermal properties. Room temperature swift heavy ion (SHI) irradiation on thin PPy films (thickness ~30–35 µm) was investigated under high vacuum (~10−5 Torr) condition by 160 MeV Ni12+ SHI using various irradiation fluences such as 1010, 5 × 1010, 1011, 5 × 1011 and 1012 ions/cm2. High-resolution transmission electron microscopy (HRTEM) was used to investigate the morphological changes of SHI-irradiated PPy nanotubes. The irradiated nanotubes exhibit denser structure, and density is highest at 5 × 1011 ions/cm2 irradiation fluence. However, on irradiation with the highest ion fluence of 1012 ions/cm2, the density of irradiated PPy nanotubes is decreased. Up to the ion fluence of 5 × 1011 ions/cm2, reduction in optical band gap energy (Eg) of irradiated PPy nanotubes is observed; however, at the investigated highest irradiation fluence of 1012 ions/cm2, value of Eg is found to be higher as compared to the unirradiated PPy nanotubes. Micro-Raman studies exhibit that upon SHI irradiation up to the ion fluence of 5 × 1011 ions/cm2, the π-conjugation length and crystallinity of PPy nanotubes are increased. Thermogravimetric analysis (TGA) shows enhanced thermal stability of irradiated PPy nanotubes with increasing ion fluence, while thermal stability of PPy nanotubes decreases at the highest irradiation fluence. The current-voltage (I-V) characteristics for the irradiated PPy nanotubes get enhanced with increasing ion fluence, while their I-V characteristics decrease at the highest irradiation fluence of 1012 ions/cm2. The scaling of modulus spectra of irradiated PPy nanotubes at different irradiation fluences depicts irradiation fluence-independent relaxation dynamics of charge carriers. At the end of the chapter, the challenges in the field of ion-matter interaction in pre-/post-irradiation as well as the processing, characterization and application of the target materials have been discussed.


Conducting polymer nanostructures Polypyrrole (PPy) nanotubes Ion-matter interaction Swift heavy ion irradiation Dielectric properties AC conductivity 


  1. 1.
    Ghosh M, Barman A, Das A et al (1998) J Appl Phys 83:4230CrossRefGoogle Scholar
  2. 2.
    Long YZ, Li MM, Gu C et al (2011) Prog Polym Sci 36:1415CrossRefGoogle Scholar
  3. 3.
    Lu Q (2010) Microchim Acta 168:205CrossRefGoogle Scholar
  4. 4.
    Gilmore KJ, Kita M, Han Y et al (2009) Biomaterials 30:5292PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guimard NK, Gomez N, Schmidt CE (2007) Prog Polym Sci 32:876CrossRefGoogle Scholar
  6. 6.
    Dey A, De SK (2007) J App Polym Sci 105:2225CrossRefGoogle Scholar
  7. 7.
    Dey A, De S, De A et al (2004) Nanotechnology 15:1277CrossRefGoogle Scholar
  8. 8.
    Pan L, Qiu H, Dou C et al (2010) Int J Mol Sci 11:2636PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Breads JL, Silbey R (1991) Conjugated polymers. Kluwer Academic, Amsterdam, The NetherlandsCrossRefGoogle Scholar
  10. 10.
    Park JW, Lee C, Jang J (2015) Sens Actuators B 208:532CrossRefGoogle Scholar
  11. 11.
    Park JW, Park SJ, Kwon OS et al (2014) Anal Chem 86:1822PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Martin CR (1995) Acc Chem Res 28:61CrossRefGoogle Scholar
  13. 13.
    Yang X, Zhu Z, Dai T et al (2005) Macromol Rapid Commun 26:1736CrossRefGoogle Scholar
  14. 14.
    Yanga X, Dai T, Zhu Z et al (2007) Polymer 48:4021CrossRefGoogle Scholar
  15. 15.
    Zhang L, Wan M (2003) Adv Funct Mater 13:815CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Wei Z, Wan M (2002) Macromolecules 35:5937CrossRefGoogle Scholar
  17. 17.
    Wei Z, Zhang Z, Wan M (2002) Langmuir 18:917CrossRefGoogle Scholar
  18. 18.
    Yang Y, Liu J, Wan M (2002) Nanotechnology 13:771CrossRefGoogle Scholar
  19. 19.
    Huang K, Wan MX (2002) Chem Mater 14:3486CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Wei Z, Zhang L et al (2005) Acta Mater 53:1373CrossRefGoogle Scholar
  21. 21.
    Zhang L, Peng H, Sui J et al (2008) J Curr Appl Phys 8:312CrossRefGoogle Scholar
  22. 22.
    Zhang L, Wan M (2002) Nanotechnology 13:750CrossRefGoogle Scholar
  23. 23.
    Fink D et al (2004) Nucl Instr Meth B 218:355CrossRefGoogle Scholar
  24. 24.
    Chapiro A (1988) Nucl Instr Meth B 32:111CrossRefGoogle Scholar
  25. 25.
    Rao V, Amara JV, Avasthi DK et al (2003) Radiat Measur 36:585CrossRefGoogle Scholar
  26. 26.
    Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of Californiya, BerkeleyGoogle Scholar
  27. 27.
    Gervais B, Bouffard S (1994) Nucl Instr Meth B 88:355CrossRefGoogle Scholar
  28. 28.
    Schiwietz G, Czerski K, Roth M et al (2004) Nucl Instr Meth B 226:4CrossRefGoogle Scholar
  29. 29.
    Wang J, Mathar J, Trickey SB et al (1999) J Phys Condens Matter 11:3973–3986CrossRefGoogle Scholar
  30. 30.
    Juaristi J, Auth C, Winter H et al (2000) Phys Rev Lett 84:2124–2127PubMedCrossRefGoogle Scholar
  31. 31.
    Nazarov VU, Pitarke JM, Kim CS et al (2005) Phys Rev B 71:121106(R)CrossRefGoogle Scholar
  32. 32.
    Kanjilal D (2001) Curr Sci 80:1560–1566Google Scholar
  33. 33.
    Trautmann C, Klaumünzer S, Trinkaus H (2000) Phys Rev Lett 85:3648–3651PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Krasheninnikov AV, Nordlund K (2010) J Appl Phy 107:071301CrossRefGoogle Scholar
  35. 35.
    Srivastava A, Singh V, Chandra A et al (2006) Nucl Instr Meth B 245:277–280CrossRefGoogle Scholar
  36. 36.
    Apel PY, Didyk AY, Fursov BI (1995) Nucl Instr Meth B 105:91–96CrossRefGoogle Scholar
  37. 37.
    Wang Y, Kang Y, Zaho W et al (1998) J Appl Phys 83:1341–1344CrossRefGoogle Scholar
  38. 38.
    Audouard A, Dural J, Toulemonde M et al (1996) Phys Rev B 54:15690–15694CrossRefGoogle Scholar
  39. 39.
    Toulemonde M (1999) Nucl Instrum Meth B 156:1–11CrossRefGoogle Scholar
  40. 40.
    Toulemonde M, Assmann W, Dufour C et al (2006) Mat Fys Med 5:263Google Scholar
  41. 41.
    Kaganov MI, Lifshitz IM, Tanatarov LV (1956) Zh Eksp Teor Fiz 31:232Google Scholar
  42. 42.
    Waligorski MPR, Hawn RN, Katz R (1986) Nucl Track Radiat Meas 11:309–319CrossRefGoogle Scholar
  43. 43.
    Szenes G (2011) Nucl Instrum Meth B 269:174–179CrossRefGoogle Scholar
  44. 44.
    Szenes G (1995) Phys Rev B 51:8026–8029CrossRefGoogle Scholar
  45. 45.
    Szenes G (1999) Phys Rev B 60:3140–3147CrossRefGoogle Scholar
  46. 46.
    Szenes G, Horvath ZE, Pecz B et al (2002) Phys Rev B 65:045206CrossRefGoogle Scholar
  47. 47.
    Toulemonde M, Dufour C, Meftah A et al (2000) Nucl Instrum Meth B 166–167:903–912CrossRefGoogle Scholar
  48. 48.
    Dunlop A, Lesueur D, Legrand P et al (1994) Nucl Instr Meth B 90:330–338CrossRefGoogle Scholar
  49. 49.
    Fleischer RL, Price PB, Walker RM (1965) J Appl Phys 36:3645–3652CrossRefGoogle Scholar
  50. 50.
    Bringa EM, Johnson RE (2002) Phys Rev Lett 88:165501PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Calcagno L, Foti G (1991) Nucl Instr Meth B 59/60:1153CrossRefGoogle Scholar
  52. 52.
    Bridwell LB, Giedd RE, Wang YQ et al (1991) Nucl Instr Meth B 56/57:656CrossRefGoogle Scholar
  53. 53.
    Calcagno L, Compagnini G, Foti G (1992) Nucl Instr Meth B 65:413CrossRefGoogle Scholar
  54. 54.
    Gupta S, Choudhary D, Sarma A (2000) J Polym Sci Part B Polym Phys 38:1589CrossRefGoogle Scholar
  55. 55.
    Fink D, Keltt R, Chadderton LT et al (1996) Nucl Instr Meth B 111:303CrossRefGoogle Scholar
  56. 56.
    Venkatesan T, Calcagno L, Elman BS et al (eds) (1987) Ion beam modification of insulators. Elsevier, Amsterdam, p 301Google Scholar
  57. 57.
    Marletta G, Iacona F (1995) In: Pauleau Y (ed) Materials and processes for surface and interface engineering. Kluwer Academic Dordrecht, The Netherlands, p 597Google Scholar
  58. 58.
    Ziegler JF (1992) In: Ziegler JF (ed) Handbook of ion implantation technology. North-Holland, Amsterdam, pp 1–68Google Scholar
  59. 59.
    Lee EH, Rao GR, Lewis MB et al (1994) J Mater Res 9:1043CrossRefGoogle Scholar
  60. 60.
    Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience Publishers, London, p 354Google Scholar
  61. 61.
    Bartok J, Hall BO, Schock KF (1986) J Appl Phys 59:1111CrossRefGoogle Scholar
  62. 62.
    Puglisi O (1989) Mater Sci Eng B 2:167CrossRefGoogle Scholar
  63. 63.
    Choi SC, Han S, Choi WK et al (1999) Nucl Instr Meth B 152:291CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Huan ACH, Tan KL et al (2000) Nucl Instr Meth B 168:29CrossRefGoogle Scholar
  65. 65.
    Ruck DM (2000) Nucl Instr Meth B 166–167:602CrossRefGoogle Scholar
  66. 66.
    Paula H, Sánchez-Parcerisa D (2013) Nucl Instr Meth B 312:110CrossRefGoogle Scholar
  67. 67.
    Kucheyev SO (2004) J Appl Phys 95:5360CrossRefGoogle Scholar
  68. 68.
    Singh L, Singh R (2004) Nucl Instr Meth B 225:478CrossRefGoogle Scholar
  69. 69.
    Srivastava A, Singh V, Dhand C et al (2006) Sensors 6:262–269CrossRefGoogle Scholar
  70. 70.
    Kumar A, Banerjee S, Saikia JP et al (2010) Nanotechnology 21:175102PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Calcagno L, Compagnini G, Foti G (1992) Phys Rev B 46:10573CrossRefGoogle Scholar
  72. 72.
    Forrest SR, Kaplan ML, Schmidt PH et al (1982) Appl Phys Lett 41:708CrossRefGoogle Scholar
  73. 73.
    Kaur A, Dhillon A, Avasthi DK (2009) J Appl Phys 106:0737151CrossRefGoogle Scholar
  74. 74.
    Kumar V, Ali Y, Sharma K et al (2014) Nucl Instrum Meth B 323:7CrossRefGoogle Scholar
  75. 75.
    Ramola RC, Chandra S, Rana JMS et al (2008) J Phys D Appl Phys 41:115411CrossRefGoogle Scholar
  76. 76.
    Chandra S, Annapoorni, Sonkawade RG et al (2009) Indian J Phys 83:943CrossRefGoogle Scholar
  77. 77.
    Hussain AMP, Kumar A, Singh F et al (2006) J Phys D 39:750CrossRefGoogle Scholar
  78. 78.
    Ramola RC, Alqudami A, Chandra S et al (2008) Radiat Eff Def Solids 163:139CrossRefGoogle Scholar
  79. 79.
    Kaur A, Dhillon A, Avasthi DK (2009) J Appl Phys 106:73715CrossRefGoogle Scholar
  80. 80.
    Chandra S, Annapoorni S, Singh F et al (2010) J Appl Polym Sci 115:2502CrossRefGoogle Scholar
  81. 81.
    LeMoel A, Durand JP, Lecomte C et al (1988) Nucl Instrum Meth B 32:115CrossRefGoogle Scholar
  82. 82.
    Licciardello A, Puglisi O, Calcagno L et al (1989) Nucl Instrum Meth B 39:769CrossRefGoogle Scholar
  83. 83.
    Xu D, Xii XL, Du GD et al (1993) Phys Stat Sol (a) 136:433CrossRefGoogle Scholar
  84. 84.
    Marletta G, Pignataro S, Oliveri C (1989) Nucl Instrum Meth B 39:773CrossRefGoogle Scholar
  85. 85.
    Fink D, Klett R (1995) Braz J Phys 25:54Google Scholar
  86. 86.
    Fink D, Alegaonkar PS, Petrov AV et al (2003) Radiat Meas 36:605CrossRefGoogle Scholar
  87. 87.
    Zhdanov GS, Bogacheva AV, Milinchuk VK et al (2000) Fourth international symposium on ionizing radiation and polymers, 24–28 Sept 2000Google Scholar
  88. 88.
    Smolyanskii AS, Zvezdina OS, Plotnikov VG (2000) Abstract submitted to the fourth international symposium on ionizing radiation and polymers, 24–28 Sept 2000Google Scholar
  89. 89.
    Ferain E, Legras R (1997) Nucl Instrum Meth B 131:97CrossRefGoogle Scholar
  90. 90.
    Pasternak CA, Alder GM, Apel PY et al (1995) Nucl Instrum Meth B 105:332CrossRefGoogle Scholar
  91. 91.
    Popok VN, Karpovich IA, Odzhaev VB (1999) Nucl Instrum Meth B 148:1106CrossRefGoogle Scholar
  92. 92.
    Ogiso H, Ishida T, Mizutani W et al (1999) Nucl Instrum Meth B 148:1097CrossRefGoogle Scholar
  93. 93.
    Chen J, Klaumünzer S, Lux-Steiner MC et al (2004) Appl Phys Lett 85:1401CrossRefGoogle Scholar
  94. 94.
    Berdinsky AS, Shevtsov YV, Okotrub AV et al (2000) Chem Sustain Dev 8:141Google Scholar
  95. 95.
    Kanjilal D, Chopra S, Narayanan MM et al (1993) Nucl Instrum Meth A 328:97CrossRefGoogle Scholar
  96. 96.
    Kim BJ, Oh SG, Han MG (2001) Synth Met 122:297CrossRefGoogle Scholar
  97. 97.
    Kim BJ, Oh SG, Han MG (2000) Langmuir 16:5841CrossRefGoogle Scholar
  98. 98.
    Harada M, Adachi M (2000) Adv Mater 12:839CrossRefGoogle Scholar
  99. 99.
    Mallick P, Rath C, Prakash J et al (2010) Nucl Instrum Meth B 268:1613CrossRefGoogle Scholar
  100. 100.
    Sharma T, Aggarwal S, Sharma A et al (2007) J Appl Phys 102:063527CrossRefGoogle Scholar
  101. 101.
    Copeland LE, Bragg RH (1958) Anal Chem 30:196CrossRefGoogle Scholar
  102. 102.
    Omastova M, Trchova M, Kovarova J et al (2003) Synth Met 138:447CrossRefGoogle Scholar
  103. 103.
    Gade VK, Shirale DJ, Gaikwad PD et al (2007) Int J Polym Mater 56:107CrossRefGoogle Scholar
  104. 104.
    Rizk RAM, Abdul-Kader AM, Ali ZI et al (2009) Vacuum 83:805CrossRefGoogle Scholar
  105. 105.
    Compagnini G, Foti G, Reitano R et al (1990) Appl Phys Lett 57:2546CrossRefGoogle Scholar
  106. 106.
    Rizk RAM, Abdul-Kader AM, Ali M et al (2008) Phys D Appl Phys 41:205304CrossRefGoogle Scholar
  107. 107.
    Virk HS, Chandi PS, Srivastava AK (2001) Nucl Instrum Meth B 183:329CrossRefGoogle Scholar
  108. 108.
    Fink D, Klett R, Chadderton LT et al (1996) Nucl Instrum Meth B 111:303CrossRefGoogle Scholar
  109. 109.
    Crowley K, Cassidy J (2003) J Electroanal Chem 547:75CrossRefGoogle Scholar
  110. 110.
    Gongcalves AB, Mangrich AS, Zarbin AJG (2000) Synth Met 114:119CrossRefGoogle Scholar
  111. 111.
    Liu Y, Hwang BJ, Jian W et al (2000) Thin Solid Films 374:85CrossRefGoogle Scholar
  112. 112.
    Zarbin AJG, De-Paoli MA, Alves OL (1999) Synth Met 99:227CrossRefGoogle Scholar
  113. 113.
    Bazzaoui EA, Levi G, Aeiyach S et al (1995) J Phys Chem 99:6628CrossRefGoogle Scholar
  114. 114.
    Xu J, Shi G, Xu Z et al (2001) J Electroanal Chem 514:16CrossRefGoogle Scholar
  115. 115.
    Ali Y, Sonkawade RG, Dhaliwal AS (2013) Nucl Instrum Meth B 316:42CrossRefGoogle Scholar
  116. 116.
    Sidebottom DL (1999) Phys Rev Lett 82:3653CrossRefGoogle Scholar
  117. 117.
    Rao S, Murali Krishna K, Madhava Prasad P et al (2008) J Alloys Compd 464:497CrossRefGoogle Scholar
  118. 118.
    Havriliak S, Negami S (1967) Polymer 8:161CrossRefGoogle Scholar
  119. 119.
    Neagu RM, Neagu N, Bonanes N et al (2000) J Appl Phys 88:6669CrossRefGoogle Scholar
  120. 120.
    Ghosh S, Ghosh A (2003) J Chem Phys 119:9106CrossRefGoogle Scholar
  121. 121.
    Qureshi A, Singh NL, Shah S et al (2008) J Macromol Sci Pure Appl Chem 45:265CrossRefGoogle Scholar
  122. 122.
    Saha S, Sinha TP (2002) Phys Rev B 75:069901CrossRefGoogle Scholar
  123. 123.
    Kohlrausch R (1847) Prog Ann 12:393Google Scholar
  124. 124.
    Migahed MD, Bakr NA, Abdel-Hamid MI et al (1996) J Appl Polym Sci 59:655CrossRefGoogle Scholar
  125. 125.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  126. 126.
    Dietmar F, Chadderton LT (2005) Radiat Eff Def Solids 160:67CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations