Radiation-Induced Effects on the Properties of Polymer-Metal Nanocomposites

  • Suman MahendiaEmail author
  • Rishi Pal Chahal
  • Anil Kumar Tomar
  • Heena Wadhwa
  • Shyam Kumar
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


This chapter primarily includes the fundamental concepts related to metal nanoparticles with their unique features followed by importance of incorporating them in polymer matrix and finally considering irradiation as a novel tool to tailor the properties of metal–polymer nanocomposites. These nanocomposites are one of the promising materials which have been used in a wide variety of applications ranging from biomedical to optical and electrical devices to aerospace applications. Ionizing irradiation technique is among the most promising strategies for synthesis as well as to amend the changes in composite material because of the advantage of irradiation process compared to conventional synthesis like chemical, vapour deposition, etc., the process is simple, clean and controlled, carried out without producing undesired oxidants products of reducing agents, avoids the addition of undesirable impurities and produces composites which are highly stable. Irradiation-induced effects on polymer-metal nanocomposites provide unique pathway to control and modify the structural, optical and electrical properties of composites basically required for various applications as per desire. Thus, utilizing irradiations as a novel tool, a systematic study has been done to tune the properties of polymer-metal nanocomposites. Induced changes on structural, optical, and electrical properties have been conferred in this chapter.


Polymer Metal nanoparticles Nanocomposites Surface plasmon resonance Optical band gap Refractive index Antireflective coating UV blocking Structural properties 


  1. 1.
    Feynman RP (1960) Eng Sci 22–36Google Scholar
  2. 2.
    Drexler KE (2004) Bull Sci Technol Soc 24(1):21–27CrossRefGoogle Scholar
  3. 3.
    “Plenty of room” revisited (2009) Nat Nanotechnol 4:781Google Scholar
  4. 4.
    Azzoni CB, Di Martino D, Marchesi V, Messiga B, Riccardi MP (2005) Archaeometry 47(2):381–388CrossRefGoogle Scholar
  5. 5.
    Cox GA, Gillies KJS (1986) Archaeometry 28(1):57–68CrossRefGoogle Scholar
  6. 6.
    Cramp RJ (1975) J Glass Stud 17:88–96Google Scholar
  7. 7.
    Brugger J (2009) Nanotechnology 20(43):430206PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Suri SS, Fenniri H, Singh B (2007) J Occup Med Toxicol 2:16PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Solanki A, Kim JD, Lee KB (2008) Nanomedicine (Lond) 3(4):567–578CrossRefGoogle Scholar
  10. 10.
    Kim E-S, Ahn EH, Dvir T, Kim D-H (2014) Int J Nanomed 9:1–5CrossRefGoogle Scholar
  11. 11.
    Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Adv Drug Deliv Rev 0:79–97. Scholar
  12. 12.
    Chahal RP, Mahendia S, Tomar AK, Kumar S (2015) Appl Surf Sci 343:160–165CrossRefGoogle Scholar
  13. 13.
    Chahal RP, Mahendia S, Tomar AK, Kumar S (2012) J Alloys Comp 538:212–219CrossRefGoogle Scholar
  14. 14.
    Mahendia S, Tomar AK, Chahal RP, Goyal P, Kumar S (2011) J Phys D Appl Phys 44:205105CrossRefGoogle Scholar
  15. 15.
    Cao Z, Abe Y, Nagahama T, Tsuchiya K, Ogino K (2013) Polymer 54:269–276CrossRefGoogle Scholar
  16. 16.
    Xu P, Han X, Zhang B, Dua Y, Wang H (2014) Chem Soc Rev 43:1349–1360PubMedCrossRefGoogle Scholar
  17. 17.
    Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Wiley, Hoboken, New JerseyGoogle Scholar
  18. 18.
    Yeum YH, Deng Y (2005) Colloid Polym Sci 283:1172–1179CrossRefGoogle Scholar
  19. 19.
    Biswas A, Avasthi DK, Fink D, Kanzow J, Schürmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Instr Meth B 217:39–50CrossRefGoogle Scholar
  20. 20.
    Qureshi A, Singh NL, Shah S, Kulriya P, Singh F, Avasthi DK (2008) Nucl Instr Meth B 266:1775–1779CrossRefGoogle Scholar
  21. 21.
    Abd El-Kader KAM, Hamied SFA (2002) J Appl Polym Sci 86:1219–1226CrossRefGoogle Scholar
  22. 22.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Praharaj S, Nath S, Ghosh S, Kundu S, Pal T (2004) Langmuir 20:9889PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Campbell CT, Parker SC, Starr DE (2002) Science 298:811PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Frederix F, Friedt J, Choi K, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Anal Chem 75:6894PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Folarin OM, Sadiku ER, Maity A (2011) Inter J Phys Sci 6(21):4869–4882Google Scholar
  27. 27.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  28. 28.
    Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  29. 29.
    Whitesides GM, Love JC (2001) Sci Am 285:38PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Uskoković V (2013) J Biomed Nanotechnol 9(9):1441–1470PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fritz G, Schädler V, Willenbacher N, Wagner NJ (2002) Langmuir 18:6381–6390CrossRefGoogle Scholar
  33. 33.
    Corbierre MK, Cameron NS, Mark S, Laaziri K, Lennox RB (2005) Langmuir 21:6063PubMedCrossRefGoogle Scholar
  34. 34.
    Naka K, Itoh H, Park S, Chujo Y (2004) Polymer Bull 52:171–176CrossRefGoogle Scholar
  35. 35.
    Balan L, Burget D (2006) Eur Polym J 42:3180–3189CrossRefGoogle Scholar
  36. 36.
    Lee JY, Liao Y, Nagahata R, Ahoriuchi S (2006) Polymer 47:7970–7979CrossRefGoogle Scholar
  37. 37.
    Sangermano M, Yagci Y, Rizza G (2007) Macromol 40:8827–8829CrossRefGoogle Scholar
  38. 38.
    Nadagouda MN, Varma RS (2007) Macromol Rapid Commun 28:465–472CrossRefGoogle Scholar
  39. 39.
    Kanbur Y, Irimia-V M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, Leonat L, Ullah M, Sarica H, Erten-Ela S, Schwodiauer R, Sitter H, Kucukyavuz Z, Bauer S, Sariciftc NS (2012) Org Electron 13:919PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yun Y, Pearson C, PettyMC (2009) J Appl Phys 105:034508Google Scholar
  41. 41.
    Choi JS (2008) J Inf Disp 9:35CrossRefGoogle Scholar
  42. 42.
    Feng L, Tang W, Xu X, Cui Q, Guo X (2013) IEEE Electron Device Lett 34:129CrossRefGoogle Scholar
  43. 43.
    Hadjichristov GBIL, Stefanov BI, Florian, Blaskova GD (2009) Appl Surf Sci 256:779–789CrossRefGoogle Scholar
  44. 44.
    Ram S, Gautam A, Fecht HJ, Cai J, Bansmann H, Behm RJ (2007) Philos Mag Lett 87:361CrossRefGoogle Scholar
  45. 45.
    Malik TG-A, Latif RM-A, Sawaby A, Ahmed SM (2008) J Appl Sci Res 4:331Google Scholar
  46. 46.
    Coiai S, Passaglia E, Pucci A, Ruggeri G (2015) Materials 8:3377–3427PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Mat Res 12(1):1–39CrossRefGoogle Scholar
  48. 48.
    Heilmann A (2010) Polymer films with embedded metal nanoparticles. Springer Series in Materials Science, Springer, BerlinGoogle Scholar
  49. 49.
    Kunckel J (1689) Ars Vitraria Experimentalis oder Vollkommene Glasmacherkunst, FrankfurtGoogle Scholar
  50. 50.
    Faraday M (1857) Phil Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  51. 51.
    Quinten M (2011) Optical properties of nanoparticle systems: mie and beyond. Wiley-VCH Verlag & Co., GermanyCrossRefGoogle Scholar
  52. 52.
    Steubing W (1908) Ann Phys (Leipzig) 26:329–371CrossRefGoogle Scholar
  53. 53.
    Keirbeg U, Vollmer M (1995) Optical properties of metal clusters (Springer Series in Material Science No 25). Springer, BerlinGoogle Scholar
  54. 54.
    Heilman A (2003) Polymer films with embedded metal nanoparticles. Springer, BerlinCrossRefGoogle Scholar
  55. 55.
    Schonauer D, Kreibig U (1985) Surf Sci 156:100–111CrossRefGoogle Scholar
  56. 56.
    Mie G (1908) Ann Phys (Leipzig) 25:377–445CrossRefGoogle Scholar
  57. 57.
    Henglein A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
  58. 58.
    Liu Fu-K, Hsieh S-Y, Ko Fu-H, Chu T-C (2003) Colloids Surf A Physicochem Eng Aspects 231:31–38CrossRefGoogle Scholar
  59. 59.
    El-Sayed MA (2004) Acc Chem Res 37:326–333PubMedCrossRefGoogle Scholar
  60. 60.
    Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nano Rev 1:5214CrossRefGoogle Scholar
  61. 61.
    Lüdersdorff FW. Verh. Verein. Beförderung Gewerbefleiss. 1833 Preussen 12:224Google Scholar
  62. 62.
    Garnett JCM (1904) Philos Trans R Soc London 203:385–420CrossRefGoogle Scholar
  63. 63.
    Caseri W (2000) Macromol Rapid Comm 21:705–722CrossRefGoogle Scholar
  64. 64.
    Maier SA, Kik PG, Atwater HA, Sheffer M, Harel E, Koel BE, Requicha AAG (2003) Nat Mater 2:229PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lu J, Moon K-S, Xu J, Wong CP (2006) J Mater Chem 16:1543CrossRefGoogle Scholar
  66. 66.
    Xia Y, Halas XJ (2005) MRS Bull 30:338CrossRefGoogle Scholar
  67. 67.
    Srivastava S, Haridas M, Basu JK (2008) Bull Mater Sci 31:213CrossRefGoogle Scholar
  68. 68.
    Li S, Lin MM, Toprak MS, Kim KD, Muhammed M (2010) Nano Rev 1:5214CrossRefGoogle Scholar
  69. 69.
    Qiu K, Netravali AN (2013) Polym Compos 34:799–809CrossRefGoogle Scholar
  70. 70.
    Razzak MT, Darwis D, Zainuddin S (2001) Radiat Phys Chem 62:107–113CrossRefGoogle Scholar
  71. 71.
    Demerlis CC, Schoneker DR (2003) Food Chem Toxicol 41:319–326PubMedCrossRefGoogle Scholar
  72. 72.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963–1014CrossRefGoogle Scholar
  73. 73.
    Solaro R, Corti A, Chiellini E (2000) Polym Adv Technol 11:873–878CrossRefGoogle Scholar
  74. 74.
    Devi CU, Sharma AK, Rao VVRN (2002) Mater Lett 56:167CrossRefGoogle Scholar
  75. 75.
    Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) J Mater Chem Phys 93:117CrossRefGoogle Scholar
  76. 76.
    Perelaer J, Hendriks C, de Laat AWM, Schubert US (2009) Nanotechnology 20:165303PubMedCrossRefGoogle Scholar
  77. 77.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83PubMedCrossRefGoogle Scholar
  78. 78.
    Toker RD, Kayaman-Apohan N, Kahraman MV (2013) Prog Org Coat 76:1243–1250CrossRefGoogle Scholar
  79. 79.
    Evans RD (1955) The atomic nucleus. Tata McGraw-Hill Publishing Company, New YorkGoogle Scholar
  80. 80.
    Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley, UKGoogle Scholar
  81. 81.
    Leo WR (1994) Techniques for nuclear and particle physics experiments—a how-to approach. Springer, BerlinCrossRefGoogle Scholar
  82. 82.
    Sinha D, Phukan T, Tripathy SP, Mishra R, Dwivedi KK (2001) Radiat Meas 34:109–111CrossRefGoogle Scholar
  83. 83.
    Saad AF, Atwa ST, Yokota R, Fujii M (2005) Radiat Meas 40:780–784CrossRefGoogle Scholar
  84. 84.
    Fink D (ed) (2004) Fundamentals of ion-irradiated polymers. Springer, BerlinGoogle Scholar
  85. 85.
    Ritchie RH, Claussen C (1982) Nucl Instrum Methods B 198:133–138CrossRefGoogle Scholar
  86. 86.
    Fink D, Chadderton L (2005) Braz J Phys 35(3B):735–740CrossRefGoogle Scholar
  87. 87.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New YorkCrossRefGoogle Scholar
  88. 88.
    Aumayr F, Winter HP (2005) Nucl Instrum Methods B 233:111CrossRefGoogle Scholar
  89. 89.
    Prakash J, Pivin JC, Swart H (2015) Adv Coll Interface Sci 226:187–202CrossRefGoogle Scholar
  90. 90.
    Kharisov BI, Kharissova OV, Mendez UO, Radiation synthesis of materials and compounds. ISBN 9781466505223 - CAT# K14554, pp 11–18Google Scholar
  91. 91.
    Fujita H, Izawa M, Yamazaki H (1962) Nature 196:666–667CrossRefGoogle Scholar
  92. 92.
    Marignier JL, Belloni J, Delcourt M, Chevalier JP (1985) Nature 317:344–345CrossRefGoogle Scholar
  93. 93.
    Henglein A (1989) Chem Rev 89:1861–1873CrossRefGoogle Scholar
  94. 94.
    Belloni J, Amblard J, Marignier JL, Mostafavi M (1994) Cluster atoms and molecules. In: Haberland H (ed), vol 2. Springer, BerlinGoogle Scholar
  95. 95.
    Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 22:1239–1255CrossRefGoogle Scholar
  96. 96.
    Drobny JG (2003) Radiation technology for polymers. CRC Press LLCGoogle Scholar
  97. 97.
    Choi SH, Lee K-P, Park S-B (2003) Study Surf Catal 146:93CrossRefGoogle Scholar
  98. 98.
    Choi S-H, Choi MS, KP Lee, Kang HD (2004) J Appl Polym Sci 91(4):2335Google Scholar
  99. 99.
    Kang Y-O, Choi S-H, Gopalan A, Lee K-P, Kang H-D (2006) Song YS 352:463–468Google Scholar
  100. 100.
    Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A (2010) Radiat Phy Chem 79:1240–1246CrossRefGoogle Scholar
  101. 101.
    Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS, Swart HC (2014) Vacuum 99:265–271CrossRefGoogle Scholar
  102. 102.
    Kim S, Jeong J-O, Lee S, Park J-S, Gwon H-J, Jeong SI, Hardy JG, Lim Y-M, Lee JY (2018) Sci Rep 8:3721PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Atif M, Bongiovanni R, Yang J (2015) Polym Rev 55:90–106Google Scholar
  104. 104.
    Oldring PKT (ed) (1991) Chemistry and technology of UV and EB formulation for coatings, inks and paints. SITA Techn, London, Vols 1È5Google Scholar
  105. 105.
    Ravijst JP (1990) Proc Rad Tech Conf 1: 278 (Chicago)Google Scholar
  106. 106.
    Decker C (1998) Polym Int 45:133–141CrossRefGoogle Scholar
  107. 107.
    Pappas SP (ed) (1992) Radiation curing science and technology. Plenum Press, New YorkGoogle Scholar
  108. 108.
    Balan L, Burget D (2006) Euro Poly J 42(12):3180–3189CrossRefGoogle Scholar
  109. 109.
    Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) J Phys Chem C 111(21):7676–7681CrossRefGoogle Scholar
  110. 110.
    Shameli K, Ahmad MB, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Intern J Nanomed 5:875CrossRefGoogle Scholar
  111. 111.
    Forrest SR, Kaplan ML, Schmidt PH, Venkatesan T, Lovinger AJ (1982) App Phy Lett 41:708. Scholar
  112. 112.
    Hioki T, Noda S, Sugiura M, Kakeno M, Yamada K, Kawamoto J (1983) Appl Phys Lett 43:30CrossRefGoogle Scholar
  113. 113.
    Fink D, Moller M, Chadderton LT, Cannington PH, Elliman RG, Mcdonald DC (1988) Nucl Inst Meth Phys Res B 32:125–130CrossRefGoogle Scholar
  114. 114.
    Goyal PK, Kumar V, Gupta R, Mahendia S, Sharma T, Kumar S (2011) Adv App Sci Res 2(3):227–231Google Scholar
  115. 115.
    Kumar S, Kumar R, Singh DP (2009) App Surf Sci 255:8014–8018Google Scholar
  116. 116.
    Prakash J, Tripathi A, Rigato V, Pivin JC, Tripathi J, Chae KH, Gautam S, Kumar P, Asokan K, Avasthi DK (2011) J Phys D Appl Phys 44:125302CrossRefGoogle Scholar
  117. 117.
    Prakash J, Tripathi A, Laxmi GVBS, Rigato V, Tripathi J, Avasthi DK (2013) Adv Mat Lett 4(6):408–412CrossRefGoogle Scholar
  118. 118.
    Prakash J, Tripathi A, Khan SA, Kumar S, Singh F, Tripathi JK, Tripathi J (2011) Rad Eff Defs Sol 166(8):682–688CrossRefGoogle Scholar
  119. 119.
    Zaporojtchenko V, Zekonyte J, Wille S, Schuermann U, Faupel F (2005) Nucl Inst Meth B 236:95–102CrossRefGoogle Scholar
  120. 120.
    Wang L, Angert N, Trautmann C, Vetter J (1995) J. Adhes Sci Techn 9:1523–1529CrossRefGoogle Scholar
  121. 121.
    Zaprorjtchnko V, Zenkonyte J, Faupel F (2007) Nucl Inst Meth B 265:139–145CrossRefGoogle Scholar
  122. 122.
    Mishra YK, Chakravadhanula VSK, Schurmann U, Kumar H, Kabiraj D, Ghosh S, Zaporojtchenko V, Avasthi DK, Faupel F (2008) Nucl Inst Meth B 266:1804–1809CrossRefGoogle Scholar
  123. 123.
    Prakash J, Tripathi J, Khan SA, Pivin JC, Singh F, Tripathi J, Kumar S, Avasthi DK (2010) Vacuum 84(11):1275–1279CrossRefGoogle Scholar
  124. 124.
    Biswas A, Avasthi DK, Fink D, Kanzow J, Schurmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Inst Meth B 217:39–50CrossRefGoogle Scholar
  125. 125.
    Singh F, Mohapatra S, Stoquert JP, Avasthi DK, Pivin JC (2009). 267:936–940Google Scholar
  126. 126.
    Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS (2013) Vacuum 90:59–64CrossRefGoogle Scholar
  127. 127.
    Singhal P, Rattan S (2016) J Phys Chem B 120(13):3403–3413PubMedCrossRefGoogle Scholar
  128. 128.
    Efimov AM (1995) Optical constants of inorganic glasses. CRC Press, USAGoogle Scholar
  129. 129.
    Bach H, Neuroth N (1995) The properties of optical glass. Springer, BerlinGoogle Scholar
  130. 130.
    Fox AM (2010) Optical properties of solids, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  131. 131.
    Oreski G, Tscharnuter D, Wallner GM (2008) Macromol Symp 265:124CrossRefGoogle Scholar
  132. 132.
    Kumar V, Goyal PK, Mahendia S, Gupta R, Sharma T, Kumar S (2011) Rad Eff Def Solids 166:109CrossRefGoogle Scholar
  133. 133.
    Migahed MD, Zidan HM (2006) Current App Phys 6:91CrossRefGoogle Scholar
  134. 134.
    Tauc J, Grigorovivi R, Vancu A (1966) Stat Sol 15:627–637CrossRefGoogle Scholar
  135. 135.
    Tauc J (1974) Amorphous and liquid semiconductors. Plenum PressGoogle Scholar
  136. 136.
    Datta T, Woollam JA, Notohamiprodjo W (1989) Phy Rev B 40:5956–5960CrossRefGoogle Scholar
  137. 137.
    Mostafavi M, Delcourt MO, Picq G (1993) J Radiat Phys Chem 41:453CrossRefGoogle Scholar
  138. 138.
    Linnert T, Mulvaney P, Henglein A et al (1990) J Am Chem Soc 112:4657–4664CrossRefGoogle Scholar
  139. 139.
    Sudeep PK, Kamat PV (2005) Chem Mater 17:5404–5410CrossRefGoogle Scholar
  140. 140.
    Janata E, Henglein A, Ershovt BG (1994) J Phys Chem 98:10888–10890CrossRefGoogle Scholar
  141. 141.
    Overbeek JTG (1982) Adv Colloid Interface Sci 15:251–277CrossRefGoogle Scholar
  142. 142.
    Temgire MK, Joshi SS (2004) Rad Phys Chem 71:1039–1044CrossRefGoogle Scholar
  143. 143.
    Wu W, Wang Y, Shi L, Zhu Q, Pang W, Xu G, Lu F (2005) Nanotechnology 16:3017–3022CrossRefGoogle Scholar
  144. 144.
    Nho Y, Moon S et al (2005) J Ind Eng Chem 11:159–164Google Scholar
  145. 145.
    Ramya CS, Savitha T, Selvasekarapandian S, Hirankumar G (2005) Ionics 11:436CrossRefGoogle Scholar
  146. 146.
    Link S, El-sayed MA (1999) J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  147. 147.
    Kreibig U, Bour G, Hilger A, Gartz M (1999) Phys Stat Sol (a) 175:351–366CrossRefGoogle Scholar
  148. 148.
    Garcia MA (2011) J Phys D Appl Phys 44:283001CrossRefGoogle Scholar
  149. 149.
    Kumar G, Tripathi VK (2007) Appl Phys Lett 91:161503CrossRefGoogle Scholar
  150. 150.
    Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Langmuir 12:909–912CrossRefGoogle Scholar
  151. 151.
    Singh F, Mohanta S, Stoguert JP, Avasthi DK, Pivin JC (2009) Nucl Instr Meth Phys Res B 267:936–940CrossRefGoogle Scholar
  152. 152.
    Avasthi DK, Mehta GK (2011) Swift heavy ions for materials engineering and nanostructuring. Springer Series in Materials Science, BerlinCrossRefGoogle Scholar
  153. 153.
    Abargues R, Marques-Hueso J, Canet-Ferrer J, Pedrueza E, Valdes JL, Jimenez E, Martınez-Pastor JP (2008) Nanotechnology 19:355308PubMedCrossRefGoogle Scholar
  154. 154.
    Eisa WH, Abdel-Moneam YK, Shaaban Y, Abdel-Fattah AA, Zeid AMA (2011) Mater Chem Phys 128:109–113CrossRefGoogle Scholar
  155. 155.
    Sharma K, Chahal RP, Mahendia S, Tomar AK, Kumar S (2013) Rad Eff Def Solids 168(5):378–384CrossRefGoogle Scholar
  156. 156.
    Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592CrossRefGoogle Scholar
  157. 157.
    Fink D et al (1995) Radiat Eff Def Solids 133:193–208CrossRefGoogle Scholar
  158. 158.
    Sellmeier W (1871) Ann Phys Chem 143:271Google Scholar
  159. 159.
    Wemple SH, DiDomenico M (1970) Phys Rev B 3:1338–1351CrossRefGoogle Scholar
  160. 160.
    Bhar O, Pinto JC (1991) J Appl Polym Sci 42:2795–2809CrossRefGoogle Scholar
  161. 161.
    Lorimer JW (1972) Polymer 13:2274–2276Google Scholar
  162. 162.
    Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592CrossRefGoogle Scholar
  163. 163.
    Charis MNC et al (2011) J Appl Polym Sci 122:1572–1578Google Scholar
  164. 164.
    Kumar G, Singh DB, Tripathi VK (2006) J Phys D Appl Phys 39:4436–4439CrossRefGoogle Scholar
  165. 165.
    Gautam A, Ram S (2010) Mater Chem Phys 119:266–271CrossRefGoogle Scholar
  166. 166.
    Vij A, Singh S, Kumar R, Lochab SP, Kumar VVS, Singh N (2009) J Phys D Appl Phys 42:105103CrossRefGoogle Scholar
  167. 167.
    Finch CA (1973) Polyvinyl alcohol properties and application. Wiley, HobokenGoogle Scholar
  168. 168.
    Mbhele ZH et al (2003) Chem Mater 15:5019–5024CrossRefGoogle Scholar
  169. 169.
    Shah S, Singh NL, Gavade C, Shivakumar V, Sulania I, Tripathi A, Singh F, Avasthi DK, Upadhyay RV (2010) Integr Ferroelectr Int J 117:97–103CrossRefGoogle Scholar
  170. 170.
    Thomas PS, Stuart BH (1997) Spectro Chemica Acta: Part A 53:2275–2278CrossRefGoogle Scholar
  171. 171.
    Lin WC, Yang MC (2005) Macromol Rapid Commun 26:1942–1947CrossRefGoogle Scholar
  172. 172.
    Yu DG, Lin WC, Lin CH, Chang LM, Yang MC (2007) Mater Chem Phys 101:93–98CrossRefGoogle Scholar
  173. 173.
    Tripathi J, Keller JM, Das K, Tripathi S, Sripathi T (2012) J Phys Chem Solids 73:1026–1033CrossRefGoogle Scholar
  174. 174.
    Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, BerlinCrossRefGoogle Scholar
  175. 175.
    Macleod HA (2001) Thin film optical filters, 3rd edn. Institute of Physics Publishing, Bristol and PhiladelphiaCrossRefGoogle Scholar
  176. 176.
    Liu Y, Guy OJ, Patel J, Ashraf H, Knight N (2013) Microelectron Eng 110:418–421CrossRefGoogle Scholar
  177. 177.
    Askar K, Phillips BM, Fang Y, Choi B, Gozubenli N, Jiang P, Jiang B (2013) Colloids Surf: A Physicochem Eng Aspects 439:84–100CrossRefGoogle Scholar
  178. 178.
    Jin KW, Cai S, Hua W, Da S, Xiu F, Jing L (2010) Chin Phys B 19:044210CrossRefGoogle Scholar
  179. 179.
    Chahal RP, Mahendia S, Tomar AK, Kumar S (2016) Opt Mater 52:237–241CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Suman Mahendia
    • 1
    Email author
  • Rishi Pal Chahal
    • 2
  • Anil Kumar Tomar
    • 3
  • Heena Wadhwa
    • 1
  • Shyam Kumar
    • 1
  1. 1.Department of PhysicsKurukshetra UniversityKurukshetraIndia
  2. 2.Department of PhysicsCh. Bansi Lal UniversityBhiwaniIndia
  3. 3.Department of PhysicsS. A. Jain (P.G.) CollegeAmbalaIndia

Personalised recommendations