Advertisement

High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition

  • Vladimir N. PopokEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The chapter presents an overview of the effects and phenomena leading to structural and compositional evolution of polymer materials under high-fluence ion implantation. Ion stopping mechanisms and degradation of polymer structure due to radiation damage are discussed, giving examples for different ion species and polymer types mostly focusing on the low- to medium-energy regimes. Typical depth profiles and tendencies in depth distribution of impurities as well as the related changes in composition of the implanted layers are analysed. The emphasis is put on the high-fluence implantation of metal ions leading to the nucleation of nanoparticles and formation of composite materials. A special case of cluster ion implantation is also discussed. Change in mechanical, electronic, optical and magnetic properties of the ion-implanted polymers is under the consideration in the final part of the chapter also including a brief overview on applications of these materials.

Keywords

Ion implantation High fluences Polymers Radiation damage Metal-polymer composites Metal nanoparticles Applications of ion-implanted polymers 

References

  1. 1.
    Ryssel H, Glawischnig H (eds) (1982) Ion implantation techniques. Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Ziegler JF (ed) (1992) Handbook of ion implantation technology. North-Holland, AmsterdamGoogle Scholar
  3. 3.
    Rimini E (1995) Ion implantation: basics to device fabrication. Kluwer, BostonCrossRefGoogle Scholar
  4. 4.
    Poate JM, Saadatmand K (2002) Ion beam technologies in the semiconductor world. Rev Sci Instrum 73:868–872CrossRefGoogle Scholar
  5. 5.
    Dearnaley G (1983) Applications of ion implantation in metals. Thin Sol Films 107:315–326CrossRefGoogle Scholar
  6. 6.
    Jain IP, Agarwal G (2011) Ion beam induced surface and interface engineering. Surf Sci Rep 66:77–172CrossRefGoogle Scholar
  7. 7.
    Mazzoldi P, Arnold GW (eds) (1987) Ion beam modification of insulators. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Dresselhaus MS, Wasserman B, Wnek GE (1984) Ion implantation of polymers. Mater Res Soc Symp Proc 27:413–422CrossRefGoogle Scholar
  9. 9.
    Wnek GE, Wasserman B, Loh I-H (1984) Structure/majority carrier relationships in ion-implanted polymer films. Mater Res Soc Symp Proc 27:435–437CrossRefGoogle Scholar
  10. 10.
    Venkatesan T, Wolf T, Allara D, Wilkens BJ, Taylor GN, Foti G (1984) Synthesis of hard Si-C composite films by ion beam irradiation of polymer films. Mater Res Soc Symp Proc 27:439–444CrossRefGoogle Scholar
  11. 11.
    Koon NC, Weber D, Pehrsson P, Schindler AI (1984) Magnetic properties of iron implanted polymers and graphite. Mater Res Soc Symp Proc 27:445–448CrossRefGoogle Scholar
  12. 12.
    Chapiro A (1988) Chemical modification in irradiated polymers. Nucl Instr Meth Phys Res B 32:111–114CrossRefGoogle Scholar
  13. 13.
    Marletta G (1990) Chemical reactions and physical property modifications induced by keV ion beams in polymers. Nucl Instr Meth Phys Res B 46:295–305CrossRefGoogle Scholar
  14. 14.
    Marletta G, Iacona F (1995) Chemical and physical property modifications induced by ion irradiation in polymers. In: Pauleau Y (ed) Materials and processes for surface and interface engineering. Kluwer, Dordrecht, pp 597–640CrossRefGoogle Scholar
  15. 15.
    Gied RE, Moss MG, Kaufmann J, Wang YQ (1998) Electrical applications of ion-implanted polymer films. In: Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Electrical and optical polymer systems. Marcel Dekker, New York, pp 1011–1030Google Scholar
  16. 16.
    Sviridov DV, Odzhaev VB, Kozlov IP (1998) Ion-implanted polymers. In: Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Electrical and optical polymer systems. Marcel Dekker, New York, pp 387–422Google Scholar
  17. 17.
    Popok VN (1999) Modification of surface layers of polymers by ion beams. Surf Invest 14:843–859Google Scholar
  18. 18.
    Lee EH (1999) Ion-beam modification of polymeric materials—fundamental principles and applications. Nucl Instr Meth Phys Res B 151:29–41CrossRefGoogle Scholar
  19. 19.
    Sviridov DV (2002) Chemical aspects of implantation of high-energy ions into polymeric materials. Rus Chem Rev 71:315–327CrossRefGoogle Scholar
  20. 20.
    Du G, Prigodin VN, Burns A, Joo J, Wang CS, Epstein AJ (1998) Unusual semimetallic behaviour of carbonized ion-implanted polymers. Phys Rev B 58:4485–4495CrossRefGoogle Scholar
  21. 21.
    Popok VN, Karpovich IA, Odzhaev VB, Sviridov DV (1999) Structure evolution of implanted polymers: buried conductive layers formation. Nucl Instr Meth Phys Res B 148:1106–1110CrossRefGoogle Scholar
  22. 22.
    Popok VN, Odzhaev VB, Azarko II, Kozlov IP, Sviridov DV, Hnatowicz V, Vacik J, Cervena J (2000) Multistage ion implantation of polyamide-6 films. Nucl Instr Meth Phys Res B 166–167:660–663CrossRefGoogle Scholar
  23. 23.
    Hadjichristov GB, Gueorguiev VK, Ivanov TzE, Marinov YG, Ivanov VG, Faulques E (2008) Silicon ion implanted PMMA for soft electronics. Organic Electron 9:1051–1060CrossRefGoogle Scholar
  24. 24.
    Gupta R, Kumar V, Goyal PK, Kumar S (2012) Optical characterization of poly(methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334–338CrossRefGoogle Scholar
  25. 25.
    Cottin P, Lessard RA, Knystautas EJ, Roorda S (1999) Polymer waveguides under ion implantation: optical and chemical aspects. Nucl Instr Meth Phys Res B 151:97–100CrossRefGoogle Scholar
  26. 26.
    Moliton A, Antony R, Lucas B, Ratier B, Moussant C (1999) Ion beam applications in molecular and macromolecular physics (optics, electronics, optoelectronics). Opt Mater 12:199–203CrossRefGoogle Scholar
  27. 27.
    Rück DM (2000) Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion. Nucl Instr Meth Phys Res B 166–167:602–609CrossRefGoogle Scholar
  28. 28.
    Komarov FF, Leontyev AV, Grigoryev VV, Kamishan MA (2002) Ion implantation for local change of the optical constants of polymer films. Nucl Instr Meth Phys Res B 191:728–732CrossRefGoogle Scholar
  29. 29.
    Kozlov IP, Odzhaev VB, Karpovich IA, Popok VN, Sviridov DV (1998) Optical properties of ion-implanted polymer layers. J Appl Spectr 65:390–395CrossRefGoogle Scholar
  30. 30.
    Shekhawat N, Sharma A, Aggarwal S (2011) Refractive index engineering in polycarbonate implanted by 100 keV N+ ions. Opt Engineer 50:044601CrossRefGoogle Scholar
  31. 31.
    Shekhawat N, Aggarwal S, Sharma A, Sharma SK, Deshpande SK, Nair KGM (2011) Surface disordering and its correlations with properties in argon implanted CR-39 polymer. J Appl Phys 109:083513CrossRefGoogle Scholar
  32. 32.
    Lee Eh, Lewis MB, Blau PJ, Mansur LK (1991) Improved surface properties of polymer materials by multiple ion beam treatment. J Mater Res 6:610–628CrossRefGoogle Scholar
  33. 33.
    Ochsner R, Kluge A, Zechel-Malonn S, Gong L, Ryssel H (1993) Improvement of surface properties of polymers by ion implantation. Nucl Instr Meth Phys Res B 80(81):1050–1054CrossRefGoogle Scholar
  34. 34.
    Dong H, Bell T (1999) State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surf Coat Technol 111:29–40CrossRefGoogle Scholar
  35. 35.
    Rodriguez RJ, Garcia JA, Sanchez R, Perez A, Garrido B, Morante J (2002) Modification of surface mechanical properties of polycarbonate by ion implantation. Surf Coat Technol 158–159:636–642CrossRefGoogle Scholar
  36. 36.
    Iwaki M (2001) Ion surface treatments on organic materials. Nucl Instr Meth Phys Res B 175–177:368–374CrossRefGoogle Scholar
  37. 37.
    Suzuki Y (2003) Ion beam modification of polymers for the application of medical devices. Nucl Instr Meth Phys Res B 206:501–506CrossRefGoogle Scholar
  38. 38.
    Hwang I-T, Jung C-H, Kim D-K, Nho Y-C, Choi J-H (2009) Patterning of biomolecules on a poly(ε-caprolactone) film surface functionalized by ion implantation. Coll Surf B: Bionterfaces 74:375–379CrossRefGoogle Scholar
  39. 39.
    Ishikawa J, Tsuji H, Sato H, Gotoh Y (2007) Ion implantation of negative ions for cell growth manipulation and nervous system repair. Surf Coat Technol 201:8083–8090CrossRefGoogle Scholar
  40. 40.
    Gan BK, Kondyurin A, Bilek MMM (2007) Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23:2741–2746PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Švorčik V, Tomašova P, Dvořankova B, Hnatowicz V, Ochsner R, Ryssel H (2004) Fibroblasts adhesion on ion beam modified polyethylene. Nucl Instr Meth Phys Res B 215:366–372CrossRefGoogle Scholar
  42. 42.
    Cheng X, Kondyurin A, Bao S, Bilek MMM, Ye L (2017) Plasma immersion ion implantation of polyurethane shape memory polymer: surface properties and protein immobilization. Appl Sur Sci 416:686–695CrossRefGoogle Scholar
  43. 43.
    Pehrsson PE, Weber DC, Koon NC, Campanja JE, Rose SL (1984) Chemical and physical interactions in covalent polymers implanted with transition metals. Mater Res Soc Symp Proc 27:429–434CrossRefGoogle Scholar
  44. 44.
    Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2012) Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature. Appl Phys A 107:669–683CrossRefGoogle Scholar
  45. 45.
    Bazarov VV, Petukhov Zhikharev VA, Khaibullin IB (1995) Conductivity of the granular metal films obtained by high dose ion implantation into PMMA. Mater Res Soc Symp Proc 388:417–422CrossRefGoogle Scholar
  46. 46.
    Wang Y, Bridwell LB, Giedd RE (1993) Composite conduction in ion-implanted polymers. J Appl Phys 73:474–476CrossRefGoogle Scholar
  47. 47.
    Stepanov AL, Abdullin SN, Khaibullin RI, Valeev VF, Osin YuN, Bazarov VV, Khaibullin IB (1995) Ion synthesis of colloidal silver nanoclusters in the organic substrate. Mater Res Soc Symp Proc 392:267–272CrossRefGoogle Scholar
  48. 48.
    Stepanov AL, Popok VN, Khaibullin IB, Kreibig U (2002) Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nucl Instr Meth Phys Res B 191:473–477CrossRefGoogle Scholar
  49. 49.
    Khaibullin RI, Zhikharev VA, Osin YuN, Zheglov EP, Khaibullin IB, Rameev BZ, Aktas B (2000) Structural and magnetic properties of iron and cobalt implanted silicone polymers. Nucl Instr Meth Phys Res B 166–167:897–902CrossRefGoogle Scholar
  50. 50.
    Boldyryeva H, Umeda N, Plaksin OA, Takeda Y, Kishimoto N (2005) High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373–377CrossRefGoogle Scholar
  51. 51.
    Salvadori MC, Cattani M, Teixeira FS, Brown IG (2008) Conducting polymer formed by low energy gold ion implantation. Appl Phys Lett 93:073102CrossRefGoogle Scholar
  52. 52.
    Maggioni G, Vomiero A, Carturan S et al (2004) Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation. Appl Phys Lett 85:5712–5714CrossRefGoogle Scholar
  53. 53.
    Nathawat R, Vijay YK, Kumar P, Kulriya P, Ganesan V, Sathe V (2008) Physically and chemically modified polycarbonate by metal ion implantation. Adv Polym Technol 27:143–151CrossRefGoogle Scholar
  54. 54.
    Popok VN (2005) Compositional and structural alterations of polymers under low-to-medium-energy ion implantation. In: Norris CP (ed) Surface science research. Nova Sci Publishers, New York, pp 147–193Google Scholar
  55. 55.
    Fink D (ed) (2004) Fundamentals of on-irradiated polymers. Springer-Verlag, BerlinGoogle Scholar
  56. 56.
    Fink D (ed) (2004) Transport processes in ion-irradiated polymers. Springer-Verlag, BerlinGoogle Scholar
  57. 57.
    Kondyurin A, Bilek MMM (2008) Ion beam treatment of polymers. Application aspects from medicine to space. Elsevier, AmsterdamGoogle Scholar
  58. 58.
    Apel P, Schulz A, Spohr R, Trautmann C, Vutsadakis V (1997) Tracks of very heavy ions in polymers. Nucl Instrum Meth Phys Res B 131:55–63CrossRefGoogle Scholar
  59. 59.
    Hnatowicz V (1999) Simple model of radial structure of latent tracks in polymers. Phys Stat Sol (b) 216:931–941CrossRefGoogle Scholar
  60. 60.
    De Cicco H, Saint-Martin G, Alurralde M, Bernaola OA, Filevich A (2001) Ion tracks in an organic material: application of the liquid drop model. Nucl Instr Meth Phys Res B 173:455–462CrossRefGoogle Scholar
  61. 61.
    Seitz F, Koehler J (1956) Displacement of atoms during irradiation. In: Seitz F, Turnbull D (eds) Solid state physics: advances in research and applications, vol 2. Academic Press, New York, pp 305–448Google Scholar
  62. 62.
    Sigmund P (1974) Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl Phys Lett 25:169–171CrossRefGoogle Scholar
  63. 63.
    Kelly R (1977) Theory of thermal sputtering. Rad Eff 32:91–100CrossRefGoogle Scholar
  64. 64.
    Bitensky IS, Demirev P, Sundquist BUR (1993) On a model of fullerene formation from polymers under MeV ion impact. Nucl Instr Meth Phys Res B 82:356–361CrossRefGoogle Scholar
  65. 65.
    Vilensky AI, Zagorski DL, Apel PYu, Pervov NV, Mchedlishvili BV, Popok VN, Melnik NN (2004) Thermal regression of latent tracks in the polymer irradiated by high energy heavy ions. Nucl Instr Meth Phys Res B 173:294–299CrossRefGoogle Scholar
  66. 66.
    Licciardello A, Fragala ME, Compagnini G, Puglisi O (1997) Cross section of ion polymer interaction used to individuate single track regime. Nucl Instr Meth Phys Res B 122:589–593CrossRefGoogle Scholar
  67. 67.
    Ziegler JF, Biersack JP, Littmark MD (2008) The stopping and ranges of ions in matter. Lulu Press, MorrisvilleGoogle Scholar
  68. 68.
    Davenas J, Stevenson I, Celette N, Cambon S, Gardette JL, Rivaton A, Vignoud L (2002) Stability of polymers under ionising radiation: the many faces of radiation interactions with polymers. Nucl Instr Meth Phys Res B 191:653–661CrossRefGoogle Scholar
  69. 69.
    Calcagno L, Percolla R, Foti G (1995) Ion track effects on gel formation of polystyrene. Nucl Instr Meth Phys Res B 95:59–64CrossRefGoogle Scholar
  70. 70.
    Popok VN, Azarko II, Khaibullin RI, Stepanov AL, Hnatowicz V, Mackova A, Prasalovich SV (2004) Radiation-induced change of polyimide properties under high-fluence and high ion current density implantation. Appl Phys A 78:1067–1072CrossRefGoogle Scholar
  71. 71.
    Davenas J, Xu XL, Boiteux G, Sage D (1989) Relation between structure and electronic properties of ion irradiated polymers. Nucl Instr Meth Phys Res B 39:754–763CrossRefGoogle Scholar
  72. 72.
    Švorčik V, Endršt R, Rybka V, Arenholz E, Hnatowicz V, Černy F (1995) Nitrogen implantation into polyimide. Eur Polym J 31:189–191CrossRefGoogle Scholar
  73. 73.
    Lewis MB, Lee EH (1991) Residual gas and ion-beam analysis of ion-irradiated polymers. Nucl Instr Meth Phys Res B 61:457–465CrossRefGoogle Scholar
  74. 74.
    Švorčik V, Endršt R, Rybka V, Hnatowicz V, Černy F (1994) Modification of polyethyleneterephtalate by implantation of nitrogen ions. J Electrochem Soc 141:582–584CrossRefGoogle Scholar
  75. 75.
    Picq V, Ramillon JM, Balanzat E (1998) Swift heavy ions on polymers: hydrocarbon gas release. Nucl Instr Meth Phys Res B 146:496–503CrossRefGoogle Scholar
  76. 76.
    Marletta G, Iacona F (1993) Heat-induced versus particle beam-induced chemistry in polyimide. Nucl Instr Meth Phys Res B 80(81):1405–1409Google Scholar
  77. 77.
    Bridwell LB, Giedd RE, Youngqiang W, Mohite SS, Jahnke T, Brown IM (1991) Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation. Nucl Instr Meth Phys Res B 59(60):1240–1244CrossRefGoogle Scholar
  78. 78.
    Picq V, Balanzat E (1999) Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy. Nucl Instr Meth Phys Res B 151:76–83CrossRefGoogle Scholar
  79. 79.
    Mackova A, Bocan J, Khaibullin RI, Valeev VF, Slepicka P, Sajdl P, Svorcik V (2009) Characterisation of Ni+ implanted PEEK, PET and PI. Nucl Instr Meth Phys Res B 267:1549–1552CrossRefGoogle Scholar
  80. 80.
    Sharma T, Aggarwal S, Sharma A, Kumar S, Kanjilal D, Deshpande SK, Goyal PS (2007) Effect of nitrogen ion implantation on the optical and structural characteristics of CR-39 polymer. J Appl Phys 102:063527CrossRefGoogle Scholar
  81. 81.
    Popok VN, Khaibullin RI, Toth A, Beshliu V, Hnatowicz V, Mackova A (2003) Compositional alteration of polyimide under high fluence implantation by Co+ and Fe+ ions. Surf Sci 532–535:1034–1039CrossRefGoogle Scholar
  82. 82.
    Hnatowicz V, Kvitek J, Švorčik V, Rybka V (1993) Oxidation of polyethylene implanted with As ions to different extents. Eur Polym J 29:1255–1258CrossRefGoogle Scholar
  83. 83.
    Hnatowicz V, Kvitek J, Švorčik V, Rybka V (1994) Oxygen incorporation in polyethylene and polypropylene implanted with F+, As+ and I+ ions at high dose. Appl Phys A 58:349–352CrossRefGoogle Scholar
  84. 84.
    Hnatowicz V, Kvitek J, Peřina V, Švorčik V, Rybka V, Popok V (1994) Anomalous diffusion of Pb atoms into polyethylene implanted with F and As ions to different doses. Nucl Instr Meth Phys Res B 93:282–287CrossRefGoogle Scholar
  85. 85.
    Popok VN, Azarko II, Odzhaev VB, Toth A, Khaibullin RI (2001) High fluence ion beam modification of polymer surfaces: EPR and XPS study. Nucl Instr Meth Phys Res B 178:305–310CrossRefGoogle Scholar
  86. 86.
    Odzhaev VB, Azarko II, Karpovich IA, Kozlov IP, Popok VN, Sviridov DV, Hnatowicz V, Jankovskij ON, Rybka V, Svorcik V (1995) The properties of polyethylene and polyamide implanted with B ions to high doses. Mater Lett 23:163–166CrossRefGoogle Scholar
  87. 87.
    Hnatowicz V, Peřina V, Hnatowicz V, Voseček V, Novotny J, Vacik J, Švorčik V, Rybka V, Kluge A (2000) Degradation of polyimide and polyethyleneterephtalate irradiated with 150 and 200 keV Ar+ ions, studied by RBS and ERD techniques. Nucl Instr Meth Phys Res B 161–163:1099–1103CrossRefGoogle Scholar
  88. 88.
    Popok VN, Odzhaev VB, Kozlov IP, Azarko II, Karpovich IA, Sviridov DV (1997) Ion beam effects in polymer films: structure evolution of the implanted layer. Nucl Instr Meth Phys Res B 129:60–64CrossRefGoogle Scholar
  89. 89.
    Fink D, Ibel K, Goppelt P, Biersack V, Wang L, Behar M (1990) Ion beam induced carbon clusters in polymers. Nucl Instr Meth Phys Res B 46:342–346CrossRefGoogle Scholar
  90. 90.
    Hnatowicz V, Kvitek J, Svorcik V, Rybka V, Popok V (1994) Oxygen incorporation in polyethylene implanted with 150 keV Sb ions. Czech J Phys 44:621–627CrossRefGoogle Scholar
  91. 91.
    Zaki MF, El Tabay MM, Radwan RM (2016) Effect of Ar bombardment on the electrical and optical properties of low-density polyethylene films. Pramana J Phys 87:67CrossRefGoogle Scholar
  92. 92.
    Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957CrossRefGoogle Scholar
  93. 93.
    Rizk RAM, Abdul-Kader AM, Ali ZI, Ali M (2009) Effect of ion bombardment on the optical properties of LDPE/EPDM polymer blends. Vacuum 83:805–808CrossRefGoogle Scholar
  94. 94.
    Calcagno L, Foti G (1991) Ion irradiation of polymers. Nucl Instr Meth Phys Res B 59(60):1153–1158CrossRefGoogle Scholar
  95. 95.
    Kondyurin A, Khaibullin R, Gavrilov N, Popok V (2002) Pulse and continuous ion beam treatment of polyethylene. Vacuum 68:341–347CrossRefGoogle Scholar
  96. 96.
    Schwarz F, Thorwarth G, Stritzker B (2009) Synthesis of silver and copper nanoparticle containing a-C: Hby ion irradiation of polymers. Sol State Sci 11:1819–1823CrossRefGoogle Scholar
  97. 97.
    Hnatowicz V, Hnatowicz V, Kvitek J, Peřina V, Švorčik V, Rybka V (1993) RBS study of oxidation processes in polypropylene and polyethylene implanted with fluorine ions. Nucl Instr Meth B 80(81):1059–1062CrossRefGoogle Scholar
  98. 98.
    Jankovskij O, Švorčik V, Rybka V, Hnatowicz V, Popok V (1995) Nucl Instr Meth Phys Res B 95:192–196CrossRefGoogle Scholar
  99. 99.
    Hnatowicz V, Vacik J, ŠvorčikV Rybka V, Popok V, Jankovskij O, Fink D, Klett R (1996) Iodine diffusion and trapping in polyethylene implanted with 150 keV F and As ions to different fluences. Nucl Instr Meth Phys Res B 114:81–87CrossRefGoogle Scholar
  100. 100.
    Hnatowicz V, Vacik J, Červena J, Švorčik V, Rybka V, Popok V, Fink D, Klett R (1995) Doping of ion implanted polyethylene with metallocarborane. Nucl Instr Meth Phys Res B 105:241–244CrossRefGoogle Scholar
  101. 101.
    Hnatowicz V, Vacik J, Červena J, Švorčik V, Rybka V, Fink D, Klett R (1997) Doping of ion irradiated polyethyleneterephatalate from water solution of LiCl. Phys Stat Sol (a) 159:327–333CrossRefGoogle Scholar
  102. 102.
    Popok VN, Khaibullin RI, Bazarov VV, Valeev VF, Hnatowicz V, Mackova A, Odzhaev VB (2002) Anomalous depth distribution of Fe and Co atoms in polyimide implanted to high fluence. Nucl Instr Meth Phys Res B 191:695–699CrossRefGoogle Scholar
  103. 103.
    Mackova A, Hnatowicz V, Perina V, Popok VN, Khaibullin RI, Bazarov VV, Odzhaev VB (2002) High-fluence implantation of iron into polyimide. Surf Coat Technol 158–159:395–398CrossRefGoogle Scholar
  104. 104.
    Mackova A, Malinsky P, Miksova R, Hnatowicz V, Khaibullin RI, Slepicka P, Svorcik V (2014) Characterisation of PEEK, PET and PI implanted with 80 keV Fe+ ions to high fluencies. Nucl Instr Meth Phys Res B 331:176–181CrossRefGoogle Scholar
  105. 105.
    Zhou G, Wang R, Zhang TH (2010) Analysis of surface morphological change in PET films induced by tungsten ion implantation. Nucl Instr Meth Phys Res B 268:2698–2701CrossRefGoogle Scholar
  106. 106.
    Popok VN, Hanif M, Mackova A, Miksova R (2015) Structure and plasmonic properties of thin PMMA layers with ion-synthesized Ag nanoparticles. J Polym Sci B Polym Phys 53:664–672CrossRefGoogle Scholar
  107. 107.
    Möller W, Eckstein W, Biersack JP (1988) TRIDYN-binary collision simulation of atomic collisions and dynamic composition changes in solids. Comput Phys Commun 51:355–368CrossRefGoogle Scholar
  108. 108.
    Wang Y, Mohite SS, Bridwell LB, Giedd RE, Sofield CJ (1993) Modification of high temperature and high performance polymers by ion implantation. J Mater Res 8:388–402CrossRefGoogle Scholar
  109. 109.
    Colwell JM, Wentrup-Byrne E, Bell JM, Wielunski LS (2003) A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE. Surf Coat Technol 168:216–222CrossRefGoogle Scholar
  110. 110.
    Fink D, Biersack JP, Chen JT, Stadele M, Tjan K, Behar M, Olovieri CA, Zawislak FC (1985) Distributions of light ions and foil destruction after irradiation of organic polymers. J Appl Phys 58:668–676CrossRefGoogle Scholar
  111. 111.
    Fink D, Behar M, Kaschny J, Klett R, Chadderton LT, Hnatowicz V, Vacik J, Wang L (1996) On the redistribution of 6Li+ ions implanted into polypropylene foils. Appl Phys A 62:359–367Google Scholar
  112. 112.
    Vacik J, Červena J, Fink D, Klett R, Hnatowicz V, Popok V, Odzhaev V (1997) High fluence boron implantation into polymers. Rad Eff Def Sol 143:139–156CrossRefGoogle Scholar
  113. 113.
    Lipatov Yu, Feinermann A (1979) Surface tension and surface free energy of polymers. Adv Colloid Interface Sci 11:195–233CrossRefGoogle Scholar
  114. 114.
    Doering R, Nishi Y (eds) (2008) Handbook of semiconductor manufacturing technology. CRC Press, Boca RatonGoogle Scholar
  115. 115.
    Popok VN, Hanif M, Ceynowa FA, Fojan P (2017) Immersion of low-energy deposited metal clusters into poly(methylmethacrylate). Nucl Instr Meth Phys Res B 409:91–95CrossRefGoogle Scholar
  116. 116.
    Prakash J, Pivin JC, Swart HC (2015) Noble metal nanoparticles embedding into polymeric materials: from fundamentals to applications. Adv Colloid Interface Sci 226:187–202PubMedCrossRefGoogle Scholar
  117. 117.
    Niklaus M, Rosset S, Dadras M, Dubois P, Shea H (2008) Microstructure of 5 keV gold-implanted polydimethylsiloxane. Scripta Mater 59:893–896CrossRefGoogle Scholar
  118. 118.
    Petukhov VY, Ibragimova MI, Khabibullina NR, Shulyndin SV, Osin YuN, Zheglov EP, Vakhonina TA, Khaibullin IB (2001) The influence of the polymer matrix structure on the ion beam synthesis of metal-polymer thin films. Polym Sci Ser A 43:1154–1162Google Scholar
  119. 119.
    Malinsky P, Mackova A, Hnatowicz V, Khaibullin RI, Valeev VF, Slepička P, Švorčik V, Slouf M, Peřina V (2012) Properties of polyimide, polyetheretherketone and polyethyleneterephthalate implanted by Ni ions to high fluences. Nucl Instr Meth Phys Res B 272:396–399CrossRefGoogle Scholar
  120. 120.
    Abdullin SN, Stepanov AL, Osin YuN, Khaibullin RI, Khaibullin IB (1998) Synthesis of metallic dispersion and continuous films in the viscous polymer by implantation of cobalt ions. Surf Coat Technol 106:214–219CrossRefGoogle Scholar
  121. 121.
    Salvadori MC, Teixeira FS, Sgubin LG, Cattani M, Brown IG (2014) Surface modification by metal ion implantation forming metallicnanoparticles in an insulating matrix. Appl Surf Sci 310:158–163CrossRefGoogle Scholar
  122. 122.
    Di Girolamo G, Massaro M, Piscopiello E, Tapfer L (2010) Metal ion implantation in inert polymers for strain gauge applications. Nucl Instr Meth Phys Res B 268:2878–2882CrossRefGoogle Scholar
  123. 123.
    Umeda N, Bandourko VV, Vasilets VN, Kishimoto N (2003) Metal precipitation process in polymers induced by ion implantation of 60 keV Cu. Nucl Instr Meth Phys Res B 206:657–662CrossRefGoogle Scholar
  124. 124.
    Khaibullin RI, Rameev BZ, Okay C, Stepanov AL, Zhikharev VA, Khaibullin IB, Tagirov LR, Aktas B (2004) Ion beam synthesis of magnetic nanopartciles in polymers. In: Aktas B, Tagirov L, Mikailov F (eds) Nanostructured magnetic materials and their applications. NATO science series: II mathematics, physics and chemistry, vol 143. Kluwer, Dordrecht, pp 33–54CrossRefGoogle Scholar
  125. 125.
    Khaibullin RI, Popok VN, Bazarov VV, Zheglov EP, Rameev BZ, Okay C, Tagirov LR, Aktas B (2002) Ion synthesis of iron granular films in polyimide. Nucl Instr Meth Phys Res B 191:810–814CrossRefGoogle Scholar
  126. 126.
    Petukhov VYu, Khabibullina NR, Ibragimova MI, Bukharaev AA, Biziaev DA, Zheglov EP, Gumarov GG, Müller R (2007) Magnetic properties of thin metal-polymer films prepared by high-dose ion-beam implantation of iron and cobalt ions into polyethylene terephtalate. Appl Magn Reson 32:345–361CrossRefGoogle Scholar
  127. 127.
    Okay C, Rameev BZ, Khaibullin RI, Okutan M, Yildiz F, Popok VN, Aktas B (2006) Ferromagnetic resonance study of iron implanted PET foils. Phys Stat Sol (a) 203:1525–1532CrossRefGoogle Scholar
  128. 128.
    Popok VN (2012) Ion implantation of polymers: formation of nanoparticulate materials. Rev Adv Mater Sci 30:1–26Google Scholar
  129. 129.
    Perez A, Melinon P, Dupuis V et al (1997) Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J Phys D Appl Phys 30:709–721CrossRefGoogle Scholar
  130. 130.
    Milani P, Iannotta S (1999) Cluster beam synthesis of nanostructured materials. Springer, BerlinCrossRefGoogle Scholar
  131. 131.
    Meiwes-Broer KH (ed) (2000) Metal clusters at surfaces. Springer, BerlinGoogle Scholar
  132. 132.
    Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1–49CrossRefGoogle Scholar
  133. 133.
    Popok VN, Prasalovich SV, Campbell EEB (2004) Surface nanostructuring by implantation of cluster ions. Vacuum 76:265–272CrossRefGoogle Scholar
  134. 134.
    Popok VN, Campbell EEB (2006) Beams of atomic clusters: effects on impact with solids. Rev Adv Mater Res 11:19–45Google Scholar
  135. 135.
    Toyoda N, Yamada I (2008) Gas cluster ion beam equipment and applications for surface processing. IEEE Trans Plasma Sci 36:1471–1488CrossRefGoogle Scholar
  136. 136.
    Popok VN (2014) Cluster ion implantation in graphite and diamond: radiation damage and stopping of cluster constituents. Rev Adv Mater Sci 38:7–16Google Scholar
  137. 137.
    De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676CrossRefGoogle Scholar
  138. 138.
    Hagena OF (1992) Cluster ion sources. Rev Sci Instr 64:2374–2379CrossRefGoogle Scholar
  139. 139.
    Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266–3271CrossRefGoogle Scholar
  140. 140.
    Popok VN, Prasalovich SV, Samuelsson M, Campbell EEB (2002) Design and capabilities of a cluster implantation and deposition apparatus: first results on hillock formation under energetic cluster ion bombardment. Rev Sci Instr 73:4283–4287CrossRefGoogle Scholar
  141. 141.
    Popok VN, Barke I, Campbell EEB, Meiwes-Broer K-H (2011) Cluster-surface interaction: from soft landing to implantation. Surf Sci Rep R 66:347–377CrossRefGoogle Scholar
  142. 142.
    Ravagnan L, Divitini G, Rebasti S, Marelli M, Piseri P, Milani P (2009) Poly(methyl methacrylate)–palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces. J Phys D Appl Phys 42:082002CrossRefGoogle Scholar
  143. 143.
    Solar P, Kylian O, Polonskyi O, Artemenko A, Arzhakov D, Drabik M, Slavinska D, Vandrovcova M, Bacakova L, Biederman H (2012) Nanocomposite coatings of Ti/C: H plasma polymer particles providing a surface with variable nanoroughness. Surf Coat Technol 206:4335–4342CrossRefGoogle Scholar
  144. 144.
    Peter T, Rehders S, Schürmann U, Strunskus T, Zaporojtchenko V, Faupel F (2013) High rate deposition system for metal-cluster/SiOxCyHz–polymer nanocomposite thin films. J Nanopart Res 15:1710–1715CrossRefGoogle Scholar
  145. 145.
    Cardia R, Melis C, Colombo L (2013) Neutral-cluster implantation in polymers by computer experiments. J Appl Phys 113:224307CrossRefGoogle Scholar
  146. 146.
    Kovacs GJ, Vincett PS (1984) Subsurface particle monolayer and film formation in softenable substrates: techniques and thermodynamic criteria. Thin Sol Films 111:65–81CrossRefGoogle Scholar
  147. 147.
    Corbelli G, Ghisleri C, Marelli M, Milani P, Ravagnan L (2011) Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater 23:4504–4508PubMedCrossRefGoogle Scholar
  148. 148.
    Hanif M, Juluri RR, Chirumamilla M, Popok VN (2016) Poly (methyl methacrylate) composites with size-selected silver nanoparticles fabricated using cluster beam technique. J Polym Sci B Polym Phys 54:1152–1159CrossRefGoogle Scholar
  149. 149.
    Ceynowa FA, Chirumamilla M, Popok VN (2017) Polymer composite films with size-selected metal nanoparticles fabricated by cluster beam technique. In: Proceedings of 12th international conference interaction of radiation with solids, Minsk, Sept 19–22, pp 301–303Google Scholar
  150. 150.
    Nathawat R, Kumar A, Kulshrestha V, Vijay YK, Kobayashi T, Kanjilal D (2008) Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation. Nucl Instr Meth Phys Res B 266:4749–4756CrossRefGoogle Scholar
  151. 151.
    Kondyurin A, Gan BK, Bilek MMM, McKenzie DR, Mizuno K, Wuhrer R (2008) Argon plasma immersion ion implantation of polystyrene films. Nucl Instr Meth Phys Res B 266:1074–1084CrossRefGoogle Scholar
  152. 152.
    Chen JS, Sun Z, Guo PS, Zhang ZB, Zhu DZ, Xu HJ, Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene. J Appl Phys 93: 5103–5108CrossRefGoogle Scholar
  153. 153.
    Kondyurin A, Gan BK, Bilek MMM, Mizuno K, McKenzie DR (2006) Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasma. Nucl Instr Meth Phys Res B 251:413–418CrossRefGoogle Scholar
  154. 154.
    Mesyats G, Klyachkin Yu, Gavrilov N, Kondyurin A (1999) Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52:285–289CrossRefGoogle Scholar
  155. 155.
    Fu RKY, Cheung ITL, Mei YF, Shek CH, Siu GG, Chu PK, Yang WM, Leng YX, Huang YX, Tian XB, Yang SQ (2005) Surface modification of polymeric materials by plasma immersion ion implantation. Nucl Instr Meth Phys Res B 237:417–421CrossRefGoogle Scholar
  156. 156.
    Bačakova L, Mareš V, Bottone MG, Pellicciari C, Lisa V, Švorčik V (2000) Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J Biomed Mater Res 49:369–379PubMedCrossRefGoogle Scholar
  157. 157.
    Walachova K, Švorčik V, Bačakova L, Hnatowicz V (2002) Colonization of ion-modified polyethylene with vascular smooth muscle cells in vitro. Biomaterials 23:2989–2996PubMedCrossRefGoogle Scholar
  158. 158.
    Marletta G (2010) Ion-beam modification of polymer surface for biological applications. In: Bernas H (ed) Materials science with ion beams, Topics Appl Phys, vol 116. Springer-Verlag, Berlin, pp 345–369CrossRefGoogle Scholar
  159. 159.
    Bilek MMM (2014) Biofunctionalization of surfaces by energetic ion implantation: review of progress on applications in implantable biomedical devices and antibody microarrays. Appl Surf Sci 310:3–10CrossRefGoogle Scholar
  160. 160.
    Han ZJ, Tay BK (2009) Ti–PS nanocomposites by plasma immersion ion implantation and deposition. Nucl Instr Meth. Phys Res B 267:496–501CrossRefGoogle Scholar
  161. 161.
    Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Engineer C 60:195–203CrossRefGoogle Scholar
  162. 162.
    Prakash S, Charabarty T, Ak Singh, Shahi VK (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53PubMedCrossRefGoogle Scholar
  163. 163.
    Rao GR, Wang ZL, Lee EH (1993) Microstructural effects on surface mechanical properties of ion implanted polymers. J Mater Res 8:927–933CrossRefGoogle Scholar
  164. 164.
    Rao GR, Monar K, Lee EH, Treglio JR (1994) Metal ion implantation effects on surface properties of polymers. Surf Coat Technol 64:69–74CrossRefGoogle Scholar
  165. 165.
    Rao GR, Lee EH, Bhattacharya R, McCormick AW (1995) Improved wear properties of high energy ion-implanted polycarbonate. J Mater Res 10:190–201CrossRefGoogle Scholar
  166. 166.
    Lee EH, Rao GR, Lewis MB, Mansur LK (1993) Ion beam application for improved polymer surface properties. Nucl Instr Meth Phys Res B 74:326–330CrossRefGoogle Scholar
  167. 167.
    Pivin JC (1995) Contribution of ionizations and atomic displacements to the hardening of ion-irradiated polymers. Thin Sol Films 263:185–193CrossRefGoogle Scholar
  168. 168.
    Zhang J, Ye X, Yu X, Li H (2001) Radiation damage and wettability change of low energy C+ implanted polytetrafluoroethylene. Mater Sci Engineer B 84:200–204CrossRefGoogle Scholar
  169. 169.
    Rao GR, Lee EH, Yao X, Brown IG (1995) Effects of metal-ion implantation on wear properties of polypropylene. J Mater Sci 30:3903–3908CrossRefGoogle Scholar
  170. 170.
    Niklaus M, Rosset S, Dubois P, Shea HR (2009) Comparison of two metal ion implantation techniques for fabrication of gold and titanium based compliant electrodes on polydimethylsiloxane. Mater Res Soc Symp Proc 1188:LL03–LL09CrossRefGoogle Scholar
  171. 171.
    Niklaus M, Shea HR (2011) Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater 59:830–840CrossRefGoogle Scholar
  172. 172.
    Chen T, Yao S, Wang K, Wang H, Zhou S (2009) Modification of the electrical properties of polyimide by irradiation with 80 keV Xe ions. Surf Coat Technol 203:3718–3721CrossRefGoogle Scholar
  173. 173.
    Moliton A, Lucas B, Moreau C, Friend RH, Francois B (1994) Francois Ion implantation in conjugated polymers: mechanisms for generation of charge carriers. Philos Mag B 69:1155–1171CrossRefGoogle Scholar
  174. 174.
    Wasserman B (1986) Fractal nature of electrical conductivity in ion-implanted polymers. Phys Rev B 34:1926–1931CrossRefGoogle Scholar
  175. 175.
    Davenas J, Thevenard P (1993) The multi-aspects of ion beam modification of insulators. Nucl Instr Meth Phys Res B 80/81:1021–1027CrossRefGoogle Scholar
  176. 176.
    Bratko J, Hall BO, Schoch KF Jr (1986) Highly conductive poly(phenylene sulfide) prepared by high-energy ion irradiation. J Appl Phys 59:1111–1116CrossRefGoogle Scholar
  177. 177.
    Aleshin AN, Gribanov AV, Dobrodumov AV, Suvorov AV, Shlimak IS (1989) Electro-physical properties of polyimide PM films treated by ion bombardment. Sov Phys Sol State 31:6–12Google Scholar
  178. 178.
    Mott NF, Devis EA (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  179. 179.
    Bridwell LB, Giedd RE, Wang YQ, Mohite SS, Jahnke T, Brown IM, Bedell CJ, Sofield CJ (1991) Ion implantation of polymers for electrical conductivity enhancement. Nucl Instr Meth Phys Res B 57:656–659CrossRefGoogle Scholar
  180. 180.
    Komarov FF, Leontyev AV, Grigoryev VV (2000) Electrophysical properties of organic materials irradiated with accelerated ions. Nucl Instr Meth Phys Res. B 166–167:650–654CrossRefGoogle Scholar
  181. 181.
    Švorčik V, Rybka V, Miček I, Popok V, Jankovskij O, Hnatowicz V, Kvitek J (1994) Structure and properties of polymers modified by ion implantation. Eur Polym J 30:1411–1415CrossRefGoogle Scholar
  182. 182.
    Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287–337CrossRefGoogle Scholar
  183. 183.
    Wu Y, Zhang T, Zhang H, Zhang X, Deng Zh, Zhou G (2000) Electrical properties of polymer modified by metal ion implantation. Nucl Instr Meth Phys Res B 169:89–93CrossRefGoogle Scholar
  184. 184.
    Teixeira FS, Salvadori MC, Cattani M, Brown IG (2009) Gold-implanted shallow conducting layers in polymethylmethacrylate. J Appl Phys 105:064313CrossRefGoogle Scholar
  185. 185.
    Mackova A, Malinsky P, Miksova R, Pupikova H, Khaibullin RI, Valeev VF, Svorcik V, Slepicka P (2013) Annealing of PEEK, PET and PI implanted with Co ions at high fluencies. Nucl Instr Meth Phys Res B 307:598–602CrossRefGoogle Scholar
  186. 186.
    Tie M, Dhirani A-A (2015) Conductance of molecularly linked gold nanoparticle films across an insulator-to-metal transition: from hopping to strong Coulomb electron-electron interactions and correlations. Phys Rev B 91:155131CrossRefGoogle Scholar
  187. 187.
    Popok VN, Lukashevich MG, Lukashevich SM, Khaibullin RI, Bazarov VV (2004) Charge carrier transport in polyimide with co nanoparticles formed by ion implantation. Surf Sci 566–568:327–331CrossRefGoogle Scholar
  188. 188.
    Lukashevich MG, Popok VN, Volobuev VS, Melnikov AA, Khaibullin RI, Bazarov VV, Wieck A, Odzhaev VB (2010) Magnetoresistive effect in PET films with iron nanoparticles synthesised by ion implantation. Open Appl Phys J 3:1–5CrossRefGoogle Scholar
  189. 189.
    Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71:064201CrossRefGoogle Scholar
  190. 190.
    Davenas J, Thevenard P (1991) Electronic structure characterization of ion beam modified polyimide by optical absorption and reflection. Nucl Instr Meth Phys Res B 59(60):1249–1252CrossRefGoogle Scholar
  191. 191.
    Rück DM, Schulz J, Deusch N (1997) Ion irradiation induced chemical changes of polymers used for optical applications. Nucl Instr Meth Phys Res B 131:149–158CrossRefGoogle Scholar
  192. 192.
    Hadjichristov G, Ivanov V, Faulques E (2008) Reflectivity modification of polymethylmethacrylate by silicon ion implantation. Appl Surf Sci 254:4820–4827CrossRefGoogle Scholar
  193. 193.
    Tsvetkova T, Balabanov S, Avramov L, Borisova E, Angelov I, Sinning S, Bischoff L (2009) Photoluminescence enhancement in Si implanted PMMA. Vacuum 83:S252–S255CrossRefGoogle Scholar
  194. 194.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  195. 195.
    Flytzanis C, Hache F, Klein MC, Ricard D, Rousignol P (1991) Nonlinear optics in composite materials. Elsevier, AmsterdamGoogle Scholar
  196. 196.
    De Julian Fernandez C, Manera MG, Spadavecchia J et al (2005) Study of the gas optical sensing properties of Au-polyimide nanocomposite films prepared by ion implantation. Sens Actuat B 111–112:225–229CrossRefGoogle Scholar
  197. 197.
    Gao W, Chen G, Xu W, Yang C, Xu S (2014) Surface-enhanced Raman scattering (SERS) chips made from metal nanoparticle-doped polymer fibres. RSC Adv 4:23838–23845CrossRefGoogle Scholar
  198. 198.
    Fateixa S, Nogueira HIS, Trindade T (2015) Hybrid nanostructures for SERS: materials development and chemical detection. Phys Chem Chem Phys 17:21046–21071PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Hedayati MK, Javaherirahim M, Mozooni B et al (2011) An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 23:5410–5414PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Elbahri M, Hedayati MK, Chakravadhanula VSK, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23:1993–1997PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Yuguang W, Tonghe Z, Andong L, Gu Z (2002) The nano-structure and properties of Ag-implanted PET. Surf Coat Technol 157:262–266CrossRefGoogle Scholar
  204. 204.
    Boldyryeva H, Kishimoto N, Umeda N, Kondo K, Plaksin OA, Takeda Y (2004) Surface modification and nanoparticle formation by negative ion implantation of polymers. Nucl Instr Meth Phys Res B 219–220:953–956CrossRefGoogle Scholar
  205. 205.
    Stepanov AL, Popok VN (2004) Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surf Sci 566–568:1250–1254CrossRefGoogle Scholar
  206. 206.
    Popok VN, Stepanov AL, Odzhaev VB (2005) Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties. J Appl Spectr 72(2):229–234CrossRefGoogle Scholar
  207. 207.
    Popok VN, Gromov AV, Nuzhdin VI, Stepanov AL (2010) Optical and AFM study of ion-synthesised silver nanoparticles in thin surface layers of SiO2 glass. J Non-Cryst Sol 356:1258–1261CrossRefGoogle Scholar
  208. 208.
    Minnai C, Milani P (2015) Metal-polymer nanocomposite with stable plasmonic tuning under cyclic strain conditions. Appl Phys Lett 107:073106CrossRefGoogle Scholar
  209. 209.
    Minnai C, Di Vice M, Milani P (2017) Mechanical-optical-electro modulation by stretching a polymer-metal nanocomposite. Nanotechnology 28:355702PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Hanif M, Juluri RR, Fojan P, Popok VN (2016) Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing. Biointerface Res Appl Chem 6(5):1564–1568Google Scholar
  211. 211.
    Magrupov MA (1981) Semiconducting pyropolymers. Russ Chem Rev 50:1104–1117CrossRefGoogle Scholar
  212. 212.
    Azarko II, Hnatowicz V, Kozlov IP, Kozlova EI, Odzhaev VB, Popok VN (1994) EPR-spectroscopy of the ion implanted polymer films. Phys Stat Sol (a) 146:K23–K27CrossRefGoogle Scholar
  213. 213.
    Goldberg IB, Crove HR, Newman PR, Heeger AJ, MacDiarmid AG (1979) Electron spin resonance of polyacetylene and AsF5-doped polyacetylene. Chem Phys 70(1979):1132–1136Google Scholar
  214. 214.
    Zhuravleva TS (1987) Studies of polyacetylene by magnetic resonance methods. Russ Chem Rev 56:69–80CrossRefGoogle Scholar
  215. 215.
    Polyboyarov VA, Andryushkova OV, Bulynnikova M (1992) Change of structure and composition of organic substances under electron irradiation. Sibirskij Khim Zhurnal 5:118–124 (in Russian)Google Scholar
  216. 216.
    Ogawa K (1988) Magnetic recording medium and method for making the same. US Patent No 4751100Google Scholar
  217. 217.
    Petukhov V, Zhikharev V, Ibragimova M, Zheglov E, Bazarov V, Khaibullin I (1996) Ions synthesis of thin granular ferromagnetic films in polymethylmethacrylate. Sol State Comm 97:361–364CrossRefGoogle Scholar
  218. 218.
    Khaibullin RI, Osin YuN, Stepanov AL, Khaibullin IB (1998) Ion synthesis of Fe and Ag granular films in viscous and solid state polymers. Vacuum 51:289–294CrossRefGoogle Scholar
  219. 219.
    Popok VN, Lukashevich MG, Gorbachuk NI, Odzhaev VB, Khaibullin RI, Khaibullin IB (2006) Magnetoresistive effect and impedance spectroscopy of Co-implanted polyimide. Phys Stat Sol (a) 203:1545–1549CrossRefGoogle Scholar
  220. 220.
    Lukashevich M, Battle X, Labarta A, Popok V, Zhikharev VA, Khaibullin RI, Odzhaev VB (2007) Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation. Nucl Instr Meth Phys Res B 257:589–592CrossRefGoogle Scholar
  221. 221.
    Kharchenko A, Lukashevich M, Popok V, Khaibullin R, Vallev V, Bazarov V, Petracic O, Wieck A, Odzhaev V (2013) Correlation of electronic and magnetic properties of thin polymer layers with cobalt nanoparticles. Part Part Syst Character 30:180–184CrossRefGoogle Scholar
  222. 222.
    Kharchenko A, Lukashevich M, Nuzhdin VI, Khaibullin RI, Odzhaev VB (2013) Modification of the magnetic properties of polyimide films by cobalt ion implantation. Phys Sol State 55:88–93CrossRefGoogle Scholar
  223. 223.
    Rameev BZ, Aktas B, Khaibullin RI, Zhikharev VA, Osin YuN, Khaibullin IB (2000) Magnetic properties of iron-and cobalt-implanted silicone polymers. Vacuum 58:551–560CrossRefGoogle Scholar
  224. 224.
    Pivin JC, Khaibullin RI, Rameev BZ, Dubus M (2004) Magnetic resonances of Fe and Ni nanoparticles in films of silicon suboxide produced by ion irradiation of triethoxysilane gels containing Fe or Ni solute atoms. J Non-Cryst Sol 333:48–55CrossRefGoogle Scholar
  225. 225.
    Malik R, Sharma R, Kanjilal D, Annapoorni S (2009) Alignment of magnetic clusters in polymer using Ar ion beam. J Phys D Appl Phys 42:235501CrossRefGoogle Scholar
  226. 226.
    Khaibullin IB, Khaibullin RI, Abdullin SN, Stepanov AL, Osin YuN, Bazarov VV, Kurzin SP (1997) Ion metal synthesis in viscous organic matter. Nucl Instr Meth Phys Res B 127(128):685–688CrossRefGoogle Scholar
  227. 227.
    Rameev B, Okay C, Yildizm F, Khaibullin RI, Popok VN, Aktas B (2004) Ferromagnetic resonance investigations of cobalt implanted polyimides. J Magnet Magn Mater 278:164–171CrossRefGoogle Scholar
  228. 228.
    Tian-Xiang C, Shu-De Y, Wei H, Tao F, Lin L, Sheng-Qiang Z (2009) Charge transport and magnetotransport properties of polyimide irradiated by 80 keV Co ions. Chin Phys Lett 26:087201CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials and ProductionAalborg UniversityAalborgDenmark

Personalised recommendations