Radiation Physics and Chemistry of Polymeric Materials

  • Paramjit SinghEmail author
  • Rajesh Kumar
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


The material properties can be modified/tailored by either of the techniques available such as top-down method, bottom-up method, composite ratio variation, doping of a suitable dopant, ion beam-related methods and many others. The modifications by ion beam and radiation treatment are quite effective techniques to calibrate the physical, chemical, surface and structural properties of the materials. Polymeric materials are highly radiation sensitive and their properties can be modified by exposing the material to different ions and radiation such as gamma rays, electron and proton beams as well as swift heavy ions. The focus of the present discussion is pointed towards the radiation (mainly swift heavy ions and gamma rays) induced modification of polymeric materials and their physical and chemical aspects. The fundamental concepts of energy transfer of swift heavy ions and the post-irradiation effects such as cross-linking and chain scissoring of polymeric materials have been discussed in this chapter. The polymeric chain scissoring and cross-linking are related to the structural, chemical, surface, electrical and free volume properties of the polymers. The concept of free volume is further related to gas diffusion and separation properties of some of the polymers. The discussion is limited up to the radiation-sensitive polymers such as polymethyl methacrylate, polyethylene terephthalate and polyallyl diglycol carbonate polymers in the present chapter. The applications related to ion beam technology have been discussed in the last section of this chapter.


Swift heavy ions Polymers Free volume Positron annihilation lifetime spectroscopy Cross-linking Chain scissoring 



Crystallite size


Band gap energy


Fractional free volume


Free volume


Intensity of o-Ps


Linear energy transfer




Polyally diglycol carbonate


Positron annihilation lifetime spectroscopy


Polyethylene terephthalate


Polymer ion track membranes


Polymethyl methacrylate




Hole radius


Residual gas analyses


Electronic energy loss


Swift heavy ions


Nuclear energy loss


Strength and range of ions in matter


Solid-state nuclear track detectors


Transport of ions in matter


X-ray diffraction


Atomic number


Lifetime of o-Ps


  1. 1.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students/editor. International Atomic Energy Agency Publishing, Vienna, AustriaGoogle Scholar
  2. 2.
    Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301CrossRefGoogle Scholar
  3. 3.
    Lee EH (1999) Ion-beam modification of polymeric materials-fundamental principles and applications. Nucl Instrum Methods Phys Res, Sect B 151:29–41CrossRefGoogle Scholar
  4. 4.
    Fleischer RL, Price PB, Walker RM, Hubbard EL (1967) Criterion for registration in dielectric track detectors. Phys Rev 156(353):355Google Scholar
  5. 5.
    Bringa EM, Johnson RE (2002) Coulomb explosion and thermal spikes. Phys Rev Lett 88:165501PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Toulemonde M, Dufour Ch, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res, Sect B 166–167:903–912CrossRefGoogle Scholar
  7. 7.
    Toulemonde M, Dufour Ch, Wang Z, Paumier E (1996) Atomic and cluster ion bombardment in the electronic stopping power regime: a thermal spike description. Nucl Instrum Methods Phys Res, Sect B 112:26–29CrossRefGoogle Scholar
  8. 8.
    Szenes G (1996) Thermal spike model of amorphous track formation in insulators irradiated by swift heavy ions. Nucl Instrum Methods Phys Res, Sect B 116:141–144CrossRefGoogle Scholar
  9. 9.
    Awasthi K, Stamm M, Abetz V, Vijay YK (2011) Large area Cl9+ irradiated PET membranes for hydrogen separation. Int J Hydrogen Energy 36:9374–9381CrossRefGoogle Scholar
  10. 10.
    Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – the stopping and range of ions in matter. Nucl Instrum Methods Phys Res, Sect B 268:1818–1823CrossRefGoogle Scholar
  11. 11.
    Bragg WH, Kleeman R (1905) On the α particles of radium, and their loss of range in passing through various atoms and molecules. Philos Mag 10:318–340CrossRefGoogle Scholar
  12. 12.
    Cleland MR, Parks LA, Cheng S (2003) Applications for radiation processing of materials. Nucl Instrum Methods Phys Res, Sect B 208:66–73CrossRefGoogle Scholar
  13. 13.
    Lee EH, Rao GR, Mansur LK (1999) LET effect on cross-linking and scission mechanisms of PMMA during irradiation. Radiat Phys Chem 55:293–305CrossRefGoogle Scholar
  14. 14.
    Delgado AO, Rizzutto MA, Tabacniks MH, Added N, Fink D (2009) Infrared analysis of ion beam irradiated polymers. Nucl Instrum Methods Phys Res, Sect B 267:1546–1548CrossRefGoogle Scholar
  15. 15.
    Avasthi DK (2000) Some interesting aspects of swift heavy ions in materials science. Curr Sci 78:1297–1306Google Scholar
  16. 16.
    Avasthi DK (1998) High energy heavy ions in materials characterization at NSC pelletron. Nucl Instrum Methods Phys Res, Sect B 136–138:729–735CrossRefGoogle Scholar
  17. 17.
    Kanjilal D (2001) Swift heavy ion-induced modification and track formation in materials. Curr Sci 80:1560–1566Google Scholar
  18. 18.
    Wang YQ (2000) Ion beam analysis of ion-implanted polymer thin films. Nucl Instrum Methods Phys Res, Sect B 161–163:1027–1032CrossRefGoogle Scholar
  19. 19.
    Hnatowicz V, Havranek V, Bocan J, Mackova A, Vacik J, Svorcik V (2008) Modification of poly(ether ether ketone) by ion irradiation. Nucl Instrum Methods Phys Res, Sect B 266:283–287CrossRefGoogle Scholar
  20. 20.
    Hnatowicz V, Perina V, Mackova A, Svorcik V, Rybka V, Fink D, Heitz J (2001) Degradation of polyimide by 100 keV He+, Ne+, Ar+ and Kr+ ions. Nucl Instrum Methods Phys Res, Sect B 175–177:437–441CrossRefGoogle Scholar
  21. 21.
    Parada MA, Delalezv N, de Almeida A, Muntele C, Muntele I, Ila D (2006) Low energy ion beam induced changes in ETFE polymer. Nucl Instrum Methods Phys Res, Sect B 242:550–552CrossRefGoogle Scholar
  22. 22.
    Forsyth M, Meakin P, Macfarlane DR, Hill AJ (1995) Positron annihilation lifetime spectroscopy as a probe of free volume in plasticized solid polymer electrolytes. Electrochim Acta 40:2349–2351CrossRefGoogle Scholar
  23. 23.
    Peng ZL, Wang B, Li SQ, Wang SJ, Liu H, Xie HQ (1994) Investigation of ionic conductivity of polymeric electrolytes based on poly (ether urethane) networks using positron probe. Phys Lett A 194:228–234CrossRefGoogle Scholar
  24. 24.
    Pas SJ, Ingram MD, Funke K, Hill AJ (2005) Free volume and conductivity in polymer electrolytes. Electrochim Acta 50:3955–3962CrossRefGoogle Scholar
  25. 25.
    Goworek T, Rybka C (1975) Influence of polymerisation on positronium formation in acenaphtylene. Phys Lett A 53:273–274CrossRefGoogle Scholar
  26. 26.
    Yave W, Car A, Peinemann K, Shaikh MQ, Ratzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes. J Membr Sci 339:177–183CrossRefGoogle Scholar
  27. 27.
    Wang ZF, Wang B, Qi N, Ding XM, Hu JL (2004) Free volume and water vapor permeability properties in polyurethane membranes studied by positrons. Mater Chem Phys 88:212–216CrossRefGoogle Scholar
  28. 28.
    Algers J, Suzuki R, Ohdaira T, Maurer FHJ (2004) Characterization of free volume and density gradients of polystyrene surfaces by low-energy positron lifetime measurements. Polymer 45:4533–4539CrossRefGoogle Scholar
  29. 29.
    Dlubek G, Stejny J, Lupke TH, Bamford D, Petters K, Hubner CH, Alam MA, Hill MJ (2002) Free-volume variation in polyethylenes of different crystallinities: positron lifetime, density, and X-Ray Studies. J Polym Sci, Part B: Polym Phys 40:65–81CrossRefGoogle Scholar
  30. 30.
    Wate S, Acharya NK, Bhahada KC, Vijay YK, Tripathi A, Avasthi DK, Das D, Ghughre S (2005) Positron annihilation lifetime and gas permeation studies of energetic ion-irradiated polycarbonate membranes. Radiat Phys Chem 73:296–301CrossRefGoogle Scholar
  31. 31.
    Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17:132–140CrossRefGoogle Scholar
  32. 32.
    Gidley DW, Peng HG, Vallery RS (2006) Positron annihilation as a method to characterize porousmaterials. Annu Rev Mater Res 36:49–79CrossRefGoogle Scholar
  33. 33.
    Singh P, Kumar R, Cyriac J, Rahul MT, Nambissan PMG, Prasad RR (2014) High energy (MeV) ion fluence dependent nano scale free volume defects studies of PMMA films. Nucl Instrum Meth Phys Res B 320:64–69CrossRefGoogle Scholar
  34. 34.
    Singh P, Kumar R, Singh R, Roychowdhury A, Das D (2015) The influence of cross-linking and clustering upon the nanohole free volume of the SHI and γ-radiation induced polymeric material. Appl Surf Sci 328:482–490CrossRefGoogle Scholar
  35. 35.
    Tao SJ (1972) The Positron annihilation in molecular substances. J Phys Chem B 105:4657–4662Google Scholar
  36. 36.
    Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58CrossRefGoogle Scholar
  37. 37.
    Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) (1988) Positron annihilation studies of fluids (p. 292). World Scientific Publishing Co. Ltd. SingaporeGoogle Scholar
  38. 38.
    Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) Positron annihilation in amine-cured epoxy polymers—pressure dependence. J Polym Sci, Part B: Polym Phys 28:1431–1441CrossRefGoogle Scholar
  39. 39.
    Socol G, Macovei AM, Miroiu F, Stefan N, Duta L, Dorcioman G, Mihailescu IN, Petrescu SM, Stan GE, Marcov DA, Chiriac A, Poeata I (2010) Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications. Mater Sci Eng, B 169:159–168CrossRefGoogle Scholar
  40. 40.
    Erbe EM, Clineff TD, Gualtieri G (2001) Comparison of a new bisphenol-a-glycidyl dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Eur Spine J 10:S147–S152PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mladenov GM, Braun M, Emmoth B, Biersack JP (1985) Ion beam impact and penetration of polymethyl methacrylate. J Appl Phys 58(7):2534–2538CrossRefGoogle Scholar
  42. 42.
    Nathawat R, Kumar A, Acharya NK, Vijay YK (2009) XPS and AFM surface study of PMMA irradiated by electron beam. Surf Coat Technol 203:2600–2604CrossRefGoogle Scholar
  43. 43.
    Hall TM, Wagner A, Thompson LFJ (1982) Ion beam exposure characteristics of resists: experimental results. Appl Phys 53:3997–4010CrossRefGoogle Scholar
  44. 44.
    Corelli JC, Steckle AJ, Pulver D (1987) Ultralow dose effects in ion-beam induced grafting of polymethylmethacrylate (PMMA). Nucl Instrum Meth Phys Res B19(20):1009–1021CrossRefGoogle Scholar
  45. 45.
    Davenas J, Xu XL, Khodr C, Treilleux M, Stefan G (1985) A percolation approach to ion beam induced modifications of organic resists. Nucl Instrum Meth Phys Res B 7(8):513–516CrossRefGoogle Scholar
  46. 46.
    Hossain UH, Lima V, Ensinger W, Baake O, Severin D, Bender M (2014) On-line and post irradiation analysis of swift heavy ion induced modification of PMMA (polymethyl-methacrylate). Nucl Instrum Methods Phys Res, Sect B 326:135–139CrossRefGoogle Scholar
  47. 47.
    Magee JL, Chatterjee A (1987) In: Farhataziz, Rodgers, MAJ (eds) Radiation chemistry, principles and applications. VCH Publishers, New YorkGoogle Scholar
  48. 48.
    Magee JL, Chatterjee A (1987) In: Freeman, GR (ed) Kinetics of nonhomogeneous processes (p. 189). Wiley, New YorkGoogle Scholar
  49. 49.
    ICRU Report 31 (1979) Average energy required to produce an ion pair, international commission on radiation units and measurements. Washington, DCGoogle Scholar
  50. 50.
    Fink D, Muller M, Ghosh S, Dwivedi KK, Vacik J, Hnatowicz V, Cervena J, Kobayashi Y (1999) Hirata K New ways of polymeric ion track characterization. Nucl Instrum Methods Phys Res, Sect B 156:170–176CrossRefGoogle Scholar
  51. 51.
    Nathawat R, Kumar A, Kulshrestha V, Vijay YK, Kobayashi T, Kanjilal D (2008) Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation. Nucl Instrum Methods Phys Res, Sect B 266:4749–4756CrossRefGoogle Scholar
  52. 52.
    Rarganathaiah C (2006) Free volume micro probe study of silver ions implanted in polycarbonate. High Perform Polym 18:933–947CrossRefGoogle Scholar
  53. 53.
    Ismayil RV, Bhajantri RF, Praveena SD, Poojary B, Dutta D, Pujari PK (2010) Optical and microstructural studies on electron irradiated PMMA: a positron annihilation study. Polym Degrad Stab 95:1083–1091CrossRefGoogle Scholar
  54. 54.
    Liao K-S, Chen H, Awad S, Yuan J-P, Hung W-S, Lee K-R, Lai J-Y, Hu C-C, Jean YC (2011) Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules 44:6818–6826CrossRefGoogle Scholar
  55. 55.
    Consolati G (2007) Temperature dependence of nanoholes free volumes in amorphous polymers. Radiat Phys Chem 76:313–317CrossRefGoogle Scholar
  56. 56.
    Unai S, Puttaraksa N, Pussadee N, Singkarat K, Rhodes MW, Whitlow HJ, Singkarat S (2013) Fast and blister-free irradiation conditions for cross-linking of PMMA induced by 2 MeV protons. Microelectron Eng 102:18–21CrossRefGoogle Scholar
  57. 57.
    Yun Y, Pearson C, Cadd DH, Thompson RL, Petty MC (2009) A cross-linked poly(methyl methacrylate) gate dielectric by ion-beam irradiation for organic thin-film transistors. Org Electron 10:1596–1600CrossRefGoogle Scholar
  58. 58.
    Hong W, Woo HJ, Choi HW, Kim YS, G-d Kim (2001) Optical property modification of PMMA by ion-beam implantation. Appl Surf Sci 169–170:428–432CrossRefGoogle Scholar
  59. 59.
    Singh D, Singh NL, Qureshi A, Kulriya P, Tripathi A, Avasthi DK, Gulluoglu AN (2010) Radiation induced modification of dielectric and structural properties of Cu/PMMA polymer composites. J Non-Cryst Solids 356:856–863CrossRefGoogle Scholar
  60. 60.
    Wang YQ, Curry M, Tavenner E, Dobson N, Giedd RE (2004) Ion beam modification and analysis of metal/polymer bi-layer thin films. Nucl Instrum Methods Phys Res, Sect B 219–220:798–803CrossRefGoogle Scholar
  61. 61.
    Qureshi A, Singh NL, Shah S, Kulriya P, Singh F, Avasthi DK (2008) Modification of polymer composite films using 120 MeV Ni10+ ions. Nucl Instrum Methods Phys Res, Sect B 266:1775–1779CrossRefGoogle Scholar
  62. 62.
    Qiao H, Wei Z, Yang H, Zhu L, Yan X (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater 2009:795928CrossRefGoogle Scholar
  63. 63.
    Gleiter H (1990) Nanocrystalline materials. Prog Mater Sci 33:223–315CrossRefGoogle Scholar
  64. 64.
    Wang ZL, Liu Y, Zhang Z (2002) Handbook of nanophase and nanostructed materials. Tsinghua University Press, Beijing, ChinaGoogle Scholar
  65. 65.
    Matsumoto M, Miyata Y (2002) Polymer absorbers containing magnetic particles: effect of polymer permittivity on wave absorption in the quasi-microwave band. J Appl Phys 91:9635–9637CrossRefGoogle Scholar
  66. 66.
    Gavade C, Singh NL, Avasthi DK, Banerjee A (2010) Effect of SHI on dielectric and magnetic properties of metal oxide/PMMA nanocomposites. Nucl Instrum Methods Phys Res, Sect B 268:3127–3131CrossRefGoogle Scholar
  67. 67.
    Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477CrossRefGoogle Scholar
  68. 68.
    Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311CrossRefGoogle Scholar
  70. 70.
    Awasthi K, Kulshrestha V, Acharya NK, Singh M, Vijay YK (2006) Ion transport through track etched polypropylene membrane. Euro Polym J 42:883–887CrossRefGoogle Scholar
  71. 71.
    Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262CrossRefGoogle Scholar
  72. 72.
    Tripathi B, Vijay YK (2010) Engineering nanoporosity for Ti+6 ion irradiated Mylar (PET) polymer by positron beam. Int J Hydrogen Energy 35:5419–5422CrossRefGoogle Scholar
  73. 73.
    Beginn U, Zipp G, Mourran A, Walther P, Moller M (2000) Membranes containing oriented supramolecular transport channels. Adv Mater 12:513–516CrossRefGoogle Scholar
  74. 74.
    Hicke HG, Becker M, Paulke BR, Ulbricht M (2006) Covalently coupled nanoparticles in capillary pores as enzyme carrier and as turbulence promoter to facilitate enzymatic polymerization reactions in flow through enzyme-membrane reactors. J Membr Sci 282:413–422CrossRefGoogle Scholar
  75. 75.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663CrossRefGoogle Scholar
  76. 76.
    Kumar R, De U, Nambissan PMG, Maitra M, Ali SA, Middya TR, Tarafdar S, Singh F, Avasthi DK, Prasad R (2008) Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly- (ethylene-oxide)–salt polymers. Nucl Instrum Methods Phys Res, Sect B 266:1783–1787CrossRefGoogle Scholar
  77. 77.
    Kumar R, Singh P (2015) Influence of SHI upon nanohole free volume and micro scale level surface modifications of polyethyleneterephthalate polymer films. Appl Surf Sci 337:19–26CrossRefGoogle Scholar
  78. 78.
    Singh P, Kumar R, Nambissan PMG (2015) Investigation of in-depth and surface properties of polyethyleneterephthalate thin films after SHI and gamma radiation treatment by means of PALS and AFM studies. Vacuum 115:31–38CrossRefGoogle Scholar
  79. 79.
    Awasthi K, Kulshrestha V, Avasthi DK, Vijay YK (2010) Optical, chemical and structural modification of oxygen irradiated PET. Radiat Meas 45:850–855CrossRefGoogle Scholar
  80. 80.
    Ramola RC, Negi A, Semwal A, Chandra S, Rana JMS, Sonkawade RG, Kanjilal D (2011) High-energy heavy-ion irradiation effects in makrofol-KG polycarbonate and PET. J Appl Polym Sci 121:3014–3019CrossRefGoogle Scholar
  81. 81.
    Biswas A, Lotha S, Fink D, Singh JP, Avasthi DK, Yadav BK, Bose SK, Khating DT, Avasthi AM (1999) The effects of swift heavy ion irradiation on the radiochemistry and melting characteristics of PET. Nucl Instrum Methods Phys Res, Sect B 159:40–51CrossRefGoogle Scholar
  82. 82.
    Prasad SG, De A, De U (2011) Structural and optical investigations of radiation damage in transparent PET polymer films. Int J Spectros Article ID 810936 (p. 7) Scholar
  83. 83.
    Metzger A (2009) Polyethylene Terephthalate and the Pillar™ Palatal Implant: its historical usage and durability in medical applications. Medtronic, Inc. PillarGoogle Scholar
  84. 84.
  85. 85.
    Ionescu A, Payne N, Fraser AG, Giddings J, Grunkemeier GL, Butchart EG (2003) Incidence of embolism and paravalvar leak after St Jude Silzone valve implantation: experience from the Cardiff Embolic Risk Factor Study. Heart 89:1055–1061PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lansdown ABG (2010) Silver in healthcare: its antimicrobial efficacy and safety in use, p 160, Chap. 7. RSC Publishing. ISBN: 978-1-84973-006-8Google Scholar
  87. 87.
    Jin W, Jianxin L, Liru S, Ling R, Zejin X, Ansha Z, Yongxiang L, Nan H (2007) The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation. Nucl Instrum Methods Phys Res, Sect B 257:141–145CrossRefGoogle Scholar
  88. 88.
    Li JX, Wang J, Shen LR, Xu ZJ, Li P, Wan GJ, Huang N (2007) The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behaviour. Surf Coat Technol 201:8155–8159CrossRefGoogle Scholar
  89. 89.
    Abdul-Kader AM (2014) Surface modifications of PADC polymeric material by ion beam bombardment for high technology applications. Radiat Meas 69:1–6CrossRefGoogle Scholar
  90. 90.
    Ramola RC, Chandra S, Rana JMS, Sonkawade RG, Kulriya PK, Singh F, Avasthi DK, Annapoorni S (2008) A comparative study of the effect of O+7 ion beam on polypyrrole and CR-39 (DOP) polymers. J Phys D: Appl Phys 41:11541CrossRefGoogle Scholar
  91. 91.
    El-Saftawy AA, Abdel Reheem AM, Kandil SA, Abd El Aal SA, Salama S (2016) Comparative studies on PADC polymeric detector treated by gamma radiation and Ar ion beam. Appl Surf Sci 371:596–606CrossRefGoogle Scholar
  92. 92.
    Kalsi PC, Agarwal C (2008) Neutron-irradiation effects on track etching and optical characteristics of CR-39 (DOP) nuclear track detector. J Mater Sci 43:2865–2868CrossRefGoogle Scholar
  93. 93.
    Zaki MF (2008) Gamma induced modification on optical band gap energy of CR-39 SSNTD. J Phys D Appl Phys 41:175404CrossRefGoogle Scholar
  94. 94.
    El-Badry BA, Zaki MF, Abdul-Kader AM, Hegazy TM, Morsy AA (2009) Ion bombardment of poly-allyl-diglycol-carbonate (CR-39). Vacuum 83:1138–1142CrossRefGoogle Scholar
  95. 95.
    Kumar R, Singh P (2013) UV–visible and infrared spectroscopic studies of Li3+ and C5+ irradiated PADC polymer. Results Phys 03:122–128CrossRefGoogle Scholar
  96. 96.
    Singh P, Kumar R (2013) Study of structural and free volume properties of swift heavy ion irradiated polyallyl diglycol carbonate polymer films. Vacuum 96:46–51CrossRefGoogle Scholar
  97. 97.
    Makkonen-Craigi S, Paronen M (2014) Potential large-scale applications of track-etched ultrafiltration polymer membranes. Arcada Working Papers 12, ISBN: 978-952-5260-54-0, ISSN: 2342-3064Google Scholar
  98. 98.
    Orlova AO, Gromova YA, Savelyeva AV, Maslov VG, Artemyev MV, Prudnikau A, Fedorov AV, Baranov AV (2011) Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology 22:455201PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sources 196:4756–4761CrossRefGoogle Scholar
  100. 100.
    Chmielewski AG, Haji-Saeid M, Ahmed S (2005) Progress in radiation processing of polymers. Nucl Instrum Methods Phys Res, Sect B 236:44–54CrossRefGoogle Scholar
  101. 101.
    Jagielski J, Turos A, Bielinski D, Abdul-Kader AM, Piatkowska A (2007) Ion-beam modified polymers for biomedical applications. Nucl Instrum Methods Phys Res, Sect B 261:690–693CrossRefGoogle Scholar
  102. 102.
    Singh NL, Shah N, Singh KP, Desai CF (2005) Electrical and thermal behavior of proton irradiated polymeric blends. Radiat Meas 40:741–745CrossRefGoogle Scholar
  103. 103.
    Singh NL, Shah S, Qureshi A, Singh F, Avasthi DK, Ganesan V (2008) Swift heavy ion induced modification in dielectric and microhardness properties of polymer composites. Polym Degrad Stab 93:1088–1093CrossRefGoogle Scholar
  104. 104.
    Singh NL, Qureshi A, Singh F, Avasthi DK (2007) Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films. Mater Sci Eng, B 137:85–92CrossRefGoogle Scholar
  105. 105.
    Shah S, Qureshi A, Singh NL, Singh KP, Avasthi DK (2008) Dielectric response of proton irradiated polymer composite films. Radiat Meas 3:S603–S606CrossRefGoogle Scholar
  106. 106.
    Shah S, Singh NL, Qureshi A, Singh D, Singh KP, Shrinet V, Tripathi A (2008) Dielectric and structural modification of proton beam irradiated polymer composite. Nucl Instrum Methods Phys Res, Sect B 266:1768–1774CrossRefGoogle Scholar
  107. 107.
    Qureshi A, Singh NL, Rakshit AK, Singh F, Avasthi DK (2007) Swift heavy ion induced modification in polyimide films. Surf Coat Technol 201:8308–8311CrossRefGoogle Scholar
  108. 108.
    Siljegovic M, Kacarevic-Popovic ZM, Krkljes AN, Stojanovic Z, Jovanovic ZM (2011) Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene–norbornene copolymer (TOPAS). Nucl Instrum Methods Phys Res, Sect B 269:708–715CrossRefGoogle Scholar
  109. 109.
    Nagata S, Konishi Y, Tsuchiya B, Toh K, Yamamoto S, Takahiro K, Shikama T (2007) Ion beam effects on electrical characteristics of proton conductive polymer. Nucl Instrum Methods Phys Res, Sect B 257:519–522CrossRefGoogle Scholar
  110. 110.
    Radwan RM, Abdul-Kader AM, El-Hag Ali A (2008) Ion bombardment induced changes in the optical and electrical properties of polycarbonate. Nucl Instrum Methods Phys Res, Sect B 266:3588–3594CrossRefGoogle Scholar
  111. 111.
    Hadjichristov GB, Gueorguiev VK, Ivanov TE, Marinov YG, Ivanov VG, Faulques E (2008) Silicon ion implanted PMMA for soft electronics. Org Electron 9:1051–1060CrossRefGoogle Scholar
  112. 112.
    Dworecki K, Hasegawa T, Sudlitz K, Slezak A, Wasik S (2001) Modification of electrical properties of polymer membranes by ion implantation. Nucl Instrum Methods Phys Res, Sect B 185:61–65CrossRefGoogle Scholar
  113. 113.
    Dworecki K, Hasegawa T, Sudlitz K, Slezak A, Wasik S (2000) Modification of electrical properties of polymer membranes by ion implantation. Nucl Instrum Methods Phys Res, Sect B 166–167:646–649CrossRefGoogle Scholar
  114. 114.
    Mishra R, Tripathy SP, Sinha D, Dwivedi KK, Ghosh S, Khathing DT, Muller M, Fink D, Chung WH (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods Phys Res, Sect B 168:59–64CrossRefGoogle Scholar
  115. 115.
    Odzhaev VB, Popok VN, Kozlova EI, Jankovskij ON, Karpovich IA (2000) Electrical properties of polyethylene modified by ion implantation and diffusion. Nucl Instrum Methods Phys Res, Sect B 166–167:655–659CrossRefGoogle Scholar
  116. 116.
    Odzhaev VB, Jankovsky ON, Karpovich IA, Partyka J, Wegierek P (2001) Electrical properties of polyethylene modified by multistage ion implantation. Vacuum 63:581–583CrossRefGoogle Scholar
  117. 117.
    Wu Y, Zhang T, Zhang H, Zhang X, Deng Z, Zhou G (2000) Electrical properties of polymer modified by metal ion implantation. Nucl Instrum Methods Phys Res, Sect B 169:89–93CrossRefGoogle Scholar
  118. 118.
    Ahmed SF, Rho GH, Lee JY, Kim SJ, Kim HY, Jang YJ, Moon MW, Lee KR (2010) Nano-embossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf Coat Technol 205:S104–S108CrossRefGoogle Scholar
  119. 119.
    Ektessabi AM, Yamaguchi K (2000) Changes in chemical states of PET films due to low and high energy oxygen ion beam. Thin Solid Films 377–378:793–797CrossRefGoogle Scholar
  120. 120.
    Zhang Y, Huan ACH, Tan KL, Kang ET (2000) Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization. Nucl Instrum Methods Phys Res, Sect B 168:29–39CrossRefGoogle Scholar
  121. 121.
    Darraud-Taupiac C, Binsangou V, Isabey R, Duverger E, Decossas JL, Makovicka L, Vareille JC (2000) Topographical modifications in PADC polymer under electron beam irradiation. Polym 41:6295–6299CrossRefGoogle Scholar
  122. 122.
    Yotoriyama T, Suzuki Y, Mise T, Tsukamoto T, Iwaki M (2005) Surface characterization of thin film induced by He+ ion-beam irradiation into PLLA. Surf Coat Technol 196:383–388CrossRefGoogle Scholar
  123. 123.
    Tripathi A, Kumar A, Singh F, Kabiraj D, Avasthi DK, Pivin JC (2005) Ion irradiation induced surface modification studies of polymers using SPM. Nucl Instrum Methods Phys Res, Sect B 236:186–194CrossRefGoogle Scholar
  124. 124.
    Zhang Z, Zhang Y, Yang K, Yi K, Zhou Z, Huang A, Mai K, Lu X (2015) Three-dimensional carbon nanotube/ethylvinylacetate/ polyaniline as a high performance electrode for supercapacitors. J Mater Chem A 03:1884–1889CrossRefGoogle Scholar
  125. 125.
    Singh P (2017) Composites based on conducting polymers and carbon nanotubes for supercapacitors. In: Kumar V, Kalia S, Swart H (eds) Composites based on conducting polymers and carbon nanotubes for supercapacitors, 1st edn. Springer, Switzerland, p 333Google Scholar
  126. 126.
    Singh P, Kumar R (2014) Influence of high-energy ion irradiation on the structural, optical, and chemical properties of polytetrafluoroethylene. Adv Polym Technol 33:21410CrossRefGoogle Scholar
  127. 127.
    Singh P, Kumar S, Prasad R, Kumar R (2014) Study of physical and chemical modifications induced by 50 MeV Li3+ ion beam in polymers. Radiat Phys Chem 94:54–57CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gujranwala Guru Nanak Khalsa CollegeLudhianaIndia
  2. 2.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityDwarka, New DelhiIndia
  3. 3.Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic Institute (RPI)TroyUSA

Personalised recommendations