Advertisement

Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical Formulations

  • Vishal SharmaEmail author
  • Pawan K. Diwan
  • Shyam Kumar
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The main interest of this chapter is to understand the fundamental energy loss processes through which incident energetic heavy ions lose their energies in the stopping medium. Fundamentals of ion interaction with matter are discussed where various modes of energy loss processes are explained. In the context of non-relativistic heavy ions, the contribution due to two types of energy loss modes, i.e., nuclear energy loss and electronic energy loss, is discussed in detail. Comparison between nuclear energy loss and electronic energy loss as a function of ion’s energy for Cu ion in Si target is shown. The fundamental Bohr energy loss equation is derived and extended by incorporating various correction terms. The most commonly used semi-empirical/empirical type energy loss formulations (Lindhard et al., Northcliffe and Schilling, Ziegler et al., Paul and Schinner, Huber et al., and Diwan et al.) are briefly introduced. Bragg’s rule, which determine the energy loss in polymers/compounds, is discussed. Finally, the importance of energy loss is highlighted.

Keywords

Electronic energy loss Nuclear energy loss Heavy ions Scaling law Effective charge 

References

  1. 1.
    Ahlen SP (1980) Rev Mod Phys 52(1):121CrossRefGoogle Scholar
  2. 2.
    Chu WK, Mayer JW, Nicolet MA (1978) Backscattering Spectrometry. Academic Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Sigmund P (1998) Nucl Instr and Meth Phys Res B135:1CrossRefGoogle Scholar
  4. 4.
    Sigmund P (2006) Particle penetration and radiation effects, general aspects and stopping of swift point charges, vol 1. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  5. 5.
    Sigmund P (2014) Penetration of atomic and molecular ions, vol 2. Springer, SwitzerlandGoogle Scholar
  6. 6.
    Thomson JJ (1912) Phil Mag 23:449CrossRefGoogle Scholar
  7. 7.
    Rutherford E (1911) Philos Mag 21:699CrossRefGoogle Scholar
  8. 8.
    Bohr N (1913) Philos Mag 25:10CrossRefGoogle Scholar
  9. 9.
    Bohr N (1915) Philos Mag 30:581CrossRefGoogle Scholar
  10. 10.
    Bohr N (1948) Kgl Danske Videnskab Selskab Mat-Fys Medd 18:8Google Scholar
  11. 11.
    Bethe H (1930) Ann Physik 5:325CrossRefGoogle Scholar
  12. 12.
    Bethe H (1932) Z Phys 76:293CrossRefGoogle Scholar
  13. 13.
    Moller C (1932) Ann Phys 14:531CrossRefGoogle Scholar
  14. 14.
    Moller C (1972) Theory of relativity. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Mott NF (1931) Proc Cambridge Philos Soc 27:255CrossRefGoogle Scholar
  16. 16.
    Bloch F (1933) Z Physik 81:363CrossRefGoogle Scholar
  17. 17.
    Landau L (1944) J Phys USSR 8:201Google Scholar
  18. 18.
    Firsov OB (1957) Sov Phy JETP 5:1192Google Scholar
  19. 19.
    Firsov OB (1958) Sov Phy JETP 6:534Google Scholar
  20. 20.
    Sigmund P, Schinner A (2000) Eur Phys J D12:425Google Scholar
  21. 21.
    Sigmund P, Schinner A (2002) Nucl Instr and Meth Phys Res B195:64CrossRefGoogle Scholar
  22. 22.
    Bragg WH, Kleeman R (1905) Philos Mag 10:318CrossRefGoogle Scholar
  23. 23.
    Bethe HA (1933) Handbuch der Physik, 24/1, 2nd edn. In: Geiger H, Scheel K, p. 273. Springer, BerlinGoogle Scholar
  24. 24.
    Brandt W, Kitagawa M (1982) Phys Rev B 25:5631CrossRefGoogle Scholar
  25. 25.
    Diwan PK, Kumar S, Sharma V, Sharma SK, Mittal VK, Sannakki B, Mathad RD, Kumar KU, Khan SA, Avasthi DK (2003) Nucl Instr and Meth Phys Res B201:389CrossRefGoogle Scholar
  26. 26.
    Diwan PK, Sharma V, Kumar S, Mittal VK, Khan SA, Avasthi DK (2007) Nucl Instr and Meth Phys Res B258:293CrossRefGoogle Scholar
  27. 27.
    Sharma V, Diwan PK, Kumar S, Khan SA, Avasthi DK (2008) Nucl Instr and Meth Phys Res B266:3988CrossRefGoogle Scholar
  28. 28.
    Diwan PK, Sharma V, Kumar S, Khan SA, Avasthi DK (2008) Nucl Instr and Meth Phys Res B266:4738CrossRefGoogle Scholar
  29. 29.
    Sharma V, Diwan PK, Sharma T, Kumar S, Avasthi DK (2009) Indian J of Phys 83(7):937CrossRefGoogle Scholar
  30. 30.
    Diwan PK, Kumar S (2015) Nucl Instr and Meth Phys Res B359:78CrossRefGoogle Scholar
  31. 31.
    Kumar S, Diwan PK (2015) J Rad Res Appl Sci 8:538Google Scholar
  32. 32.
    Rauhala E, Raisanen J (1988) Nucl Instr and Meth Phys Res B35:130CrossRefGoogle Scholar
  33. 33.
    Rauhala E, Raisanen J (1990) Phys Rev B 42(7):3877CrossRefGoogle Scholar
  34. 34.
    Rauhala E, Raisanen J (1994) Radiat Eff Def Solids 128:163CrossRefGoogle Scholar
  35. 35.
    Raisanen J, Watjen U, Plompen AJM, Munnik F (1996) Nucl Instr and Meth Phys Res B118:1CrossRefGoogle Scholar
  36. 36.
    Hsu JY, Liang JH, Yu YC, Chen KM (2007) Nucl Instr Meth Phys Res B256:153CrossRefGoogle Scholar
  37. 37.
    Hsu JY, Yu YC, Chen KM (2010) Nucl Instr Meth Phys Res B268:1786CrossRefGoogle Scholar
  38. 38.
    Moussa D, Damache S, Ouichaoui S (2015) Nucl Instr Meth Phys Res B343:44CrossRefGoogle Scholar
  39. 39.
    Damache S, Djaroum S, Ouichaoui S, Amari L, Moussa D (2016) Nucl Instr Meth Phys Res B383:164CrossRefGoogle Scholar
  40. 40.
    Miksova R, Mackova A, Malinsky P, Hnatowicz V, Slepicka P (2014) Nucl Instr Meth Phys Res B331:42CrossRefGoogle Scholar
  41. 41.
    Miksova R, Hnatowicz V, Mackova A, Malinsky P, Slepicka P (2015) Nucl Instr Meth Phys Res B354:205CrossRefGoogle Scholar
  42. 42.
    Miksova R, Mackova A, Slepicka P (2016) Nucl Instr Meth Phys Res B371:81CrossRefGoogle Scholar
  43. 43.
    Miksova R, Mackova A, Malinsky P, Sofer Z (2017) Nucl Instr Meth Phys Res B406:173CrossRefGoogle Scholar
  44. 44.
    Mammeri S, Ammi H, Dib A, Pineda-Vargas CA, Ourabah S, Msimanga M, Chekirine M, Guesmia A (2012) Radiat Phys Chem 81:1862CrossRefGoogle Scholar
  45. 45.
    Montanari CC, Dimitrious P (2017) Nucl Instr Meth Phys Res B408:50CrossRefGoogle Scholar
  46. 46.
    Trzaska WH, Knyazheva GN, Perkowski J, Andrzejewski J, Khlebnikova SV, Kozulin EM, Malkiewicz T, Mutterer M, Savelieva EO (2018) Nucl Instr Meth Phys Res B418:1CrossRefGoogle Scholar
  47. 47.
    Zhang H, Lu X, Li Y, Ali X, Zhang X, Yang G (2002) J Phochem Photobiol A: Chem 147:15CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Possnert G, Weber WJ (2002) Appl Phys Lett 80:4662CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Weber WJ (2003) Appl Phys Lett 83:1665CrossRefGoogle Scholar
  50. 50.
    Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. North-Holland, New YorkGoogle Scholar
  51. 51.
    Durrani SA, Bull RK (1987) Solid state nuclear track detection: principles, methods and applications. Pergamon Press, OxfordGoogle Scholar
  52. 52.
    Fano U (1963) Ann Rev Nucl Sci 13:1CrossRefGoogle Scholar
  53. 53.
    Bichsel H (1972) Passage of charge particles through matter. In: Gray DE (ed) American institute physics handbook, p. 8. McGraw-Hill, New YorkGoogle Scholar
  54. 54.
    Walske MC (1952) Phys Rev 88(6):1283CrossRefGoogle Scholar
  55. 55.
    Walske MC (1956) Phys Rev 101(3):940CrossRefGoogle Scholar
  56. 56.
    Bichsel H (1964) US Nat Acad Sci 1133:17Google Scholar
  57. 57.
    Bichsel H (1983) Phys Rev A 28:1147CrossRefGoogle Scholar
  58. 58.
    Bichsel H (1992) Phys Rev A 46(9):5761PubMedCrossRefGoogle Scholar
  59. 59.
    Khandelwal GS (1968) Nucl Phys A 116:97CrossRefGoogle Scholar
  60. 60.
    Bonderup E (1967) Kgl Danske Videnskab Selskab Mat-Fys Medd 35(17)Google Scholar
  61. 61.
    Rousseau CC, Chu WK, Powers D (1970) Phys Rev A 4:1066CrossRefGoogle Scholar
  62. 62.
    Ziegler JF (1977) Helium stopping powers and ranges in all elemental matter. Pergamon, New YorkGoogle Scholar
  63. 63.
    Swann WFG (1938) J Franklin Inst 226:598CrossRefGoogle Scholar
  64. 64.
    Fermi E (1940) Phys Rev 57:485CrossRefGoogle Scholar
  65. 65.
    Sternheimer RM (1960) Phys Rev 117(2):485CrossRefGoogle Scholar
  66. 66.
    Sternheimer RM (1966) Phys Rev 145(1):247CrossRefGoogle Scholar
  67. 67.
    Sternheimer RM, Seltzer SM, Berger MJ (1982) Phys Rev B 26:6067CrossRefGoogle Scholar
  68. 68.
    Crispin A, Fowler GN (1970) Rev Mod Phys 42:290CrossRefGoogle Scholar
  69. 69.
    Bichsel H (1988) Rev Mod Phys 60:663CrossRefGoogle Scholar
  70. 70.
    Scheidenberger C, Geissel H (1998) Nucl Instr Meth Phys Res B135:25CrossRefGoogle Scholar
  71. 71.
    Ziegler JF (1999) J Appl Phys 85(3):1249CrossRefGoogle Scholar
  72. 72.
    Weaver BA, Westphal AJ (2002) Nucl Instr Meth Phys Res B187:285CrossRefGoogle Scholar
  73. 73.
    Lindhard J, Scharff M, Schiott HE (1963) Mat Fys Medd Dan Vid Selsk 33(14):1Google Scholar
  74. 74.
    Pape H, Clero HG, Schmidt KH (1978) Z Physik A286:159CrossRefGoogle Scholar
  75. 75.
    Sharma A, Kumar S, Sharma SK, Nath N, Harikumar V, Pathak AP, Goteti LNSP, Hui SK, Avasthi DK (1999) J Phys G: Nucl Part Phys 25:135CrossRefGoogle Scholar
  76. 76.
    Sharma A, Diwan PK, Kumar S, Sharma SK, Mittal VK, Nageswara Rao SVS, Sannakki B, Ghosh S, Avasthi DK (2002) Nucl Instr Meth Phys Res B194:7CrossRefGoogle Scholar
  77. 77.
    Diwan PK, Kumar S, Sharma V, Sharma SK, Mittal VK, Sannakki B, Mathad RD, Kumar S, Khan SA, Avasthi DK (2003) Nucl Instr Meth Phys Res B201:389CrossRefGoogle Scholar
  78. 78.
    Northcliffe LC, Schilling RF (1970) Nuclear Data Tables A7:233CrossRefGoogle Scholar
  79. 79.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, vol 1. Pergamon Press, New YorkGoogle Scholar
  80. 80.
    Inokuti M, Itikawa Y, Turner JE (1978) Rev Mod Phys 50(1):23CrossRefGoogle Scholar
  81. 81.
    Jackson JD (1975) Classical Electrodynamics. Wiley, New YorkGoogle Scholar
  82. 82.
    Kreussler S, Varelas C, Brandt W (1981) Phys Rev B 23:82CrossRefGoogle Scholar
  83. 83.
    Ziegler JF, Biersack JP, Littmark U SRIM-2013.00 version. Available on www.srim.org
  84. 84.
    Ziegler JF, Manoyan JM (1988) Nucl Instr Meth Phys Res B35:215CrossRefGoogle Scholar
  85. 85.
    Paul H, Schinner A (2001) Nucl Instr Meth Phys Res B179:299CrossRefGoogle Scholar
  86. 86.
    Paul H, Schinner A (2002) Nucl Instr Meth Phys Res B195:166CrossRefGoogle Scholar
  87. 87.
    Paul H, Schinner A (2003) At Data Nucl Data Tables 85:377CrossRefGoogle Scholar
  88. 88.
    Berger MJ, Coursey JS, Zucker MA, Chang J (2005) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. Available on https://physics.nist.gov/star
  89. 89.
    Berger M, Bichsel H (1994) BEST, BEthe STopping power programGoogle Scholar
  90. 90.
    Paul H, Schinner A MSTAR version 3.12. Available on https://www-nds.iaea.org/stopping/MstarWWW/MSTARInstr.html
  91. 91.
    Hubert F, Bimbot R, Gauvin H (1989) Nucl Instr Meth Phys Res B36:357CrossRefGoogle Scholar
  92. 92.
    Hubert F, Bimbot R, Gauvin H (1990) At Data Nucl Data Tables 46:1CrossRefGoogle Scholar
  93. 93.
    Sharma SK, Kumar S, Yadav JS, Sharma AP (1996) Appl Radiat Isot 46(1):39CrossRefGoogle Scholar
  94. 94.
    Kumar S, Sharma SK, Nath N, Harikumar V, Pathak AP, Kabiraj D, Avasthi DK (1996) Radiat Eff Def Solids 139:197CrossRefGoogle Scholar
  95. 95.
    Sharma A, Kumar S, Sharma SK, Diwan PK, Nath N, Mittal VK, Ghosh S, Avasthi DK (2000) Nucl Instr Meth Phys Res B170:323CrossRefGoogle Scholar
  96. 96.
    Diwan PK, Sharma A, Kumar S (2001) Nucl Instr Meth Phys Res B174:267CrossRefGoogle Scholar
  97. 97.
    Diwan PK, Kumar S (2004) Nucl Instr Meth Phys Res B215:27CrossRefGoogle Scholar
  98. 98.
    Oddershede J, Sabin JR (1989) Nucl Instr Meth Phys Res B42:7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Forensic Science & CriminologyPanjab UniversityChandigarhIndia
  2. 2.Department of Applied ScienceUIET, Kurukshetra UniversityKurukshetraIndia
  3. 3.Department of PhysicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations