Effects of Neutron Irradiation on Polymer

  • Sangeeta PrasherEmail author
  • Mukesh Kumar
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Polymers have been widely utilized in various applications due to their low cost and easy processability and thus could be utilized in radiation-prone areas for their radiation-resistant behaviour. Ionizing radiations induce chemical kinetics in the polymers leading to the exchange reactions causing the variations in structural conformations. Neutrons since the discovery in 1932 have been posed as a special particle due to its neutral behaviour and hence been utilized in many medical and industrial applications. The neutral behaviour provides it a greater penetration depth and therefore more quantitative measurements to greater accuracy. This chapter has been devoted to review the influence of neutrons in various polymers for their utilization in apron making for radiation workers and neutron dosimetry. Special attention has been paid to the structural elucidation and reactivity of ionized molecules upon exposure of the polymers to the neutron beam. Recent developments in utilizing the neutron irradiation for modifications and upgrading the properties of polymers have also been discussed.


Neutron irradiation Optical modifications Radiation effects Structural modifications 


  1. 1.
    Lawrence JH, Lawrence EO (1936) Proc Nat Acad Sci 22:124CrossRefGoogle Scholar
  2. 2.
    Warrick EL (1955) Ind Eng Chem 47(11):2388CrossRefGoogle Scholar
  3. 3.
    Zirkle RE, Aebersold PC (1936) Ibid 22:134Google Scholar
  4. 4.
    Zirkle RE, Aebersold PC, Dempster ER (1937) Amer J Cancer 29:556CrossRefGoogle Scholar
  5. 5.
    Zinkle SJ, Was GS (2013) Acta Mater 61(3):735CrossRefGoogle Scholar
  6. 6.
    Sahoo GS, Tripathy SP, Joshi DS, Bandyopadhyay T (2016) J Appl Phys 120:025107CrossRefGoogle Scholar
  7. 7.
    Zinkle SJ, Snead LL (2014) Ann Rev Mater Res 44(1):241CrossRefGoogle Scholar
  8. 8.
    Gueven O (2004) Advances in radiation chemistry of polymers: proceedings of a technical meeting held in Notre Dame, Indiana, USA, pp 33–39, 13–17 Sept 2003. ISBN 92–0–112504–6Google Scholar
  9. 9.
    Ishigure K, Egusa S, Tagawa S, Tabata Y (1979) Radiat Phys Chem 14(3–6):585Google Scholar
  10. 10.
    Mallick B, Behera RC, Panigrahi S, Badapanda T, Parija B, Behera B, Panigrahi M, Sarangi M (2009) Indian J Phys 83(4):525CrossRefGoogle Scholar
  11. 11.
    Was GS (2007) Fundamentals of radiation materials science: metals and Alloys. Springer, New York, Berlin, Heidelberg, pp 4–5Google Scholar
  12. 12.
    Kumar V, Sonkawade RG, Chakarvarti SK, Kulriya P, Kant K, Singh NL, Dhaliwal AS (2011) Vacuum 86:275CrossRefGoogle Scholar
  13. 13.
    Malkapur SM, Divakar L, Narasimhan MC, Karkera NB, Goverdhan P, Sathian V, Prasad NK (2017) Appl Radiat Isot 125:86CrossRefGoogle Scholar
  14. 14.
    Mallick B, Behera RC, Patel T (2005) Bull Mater Sci 28:593CrossRefGoogle Scholar
  15. 15.
    Drobny JG (2003) Radiation technology for polymers. CRC Press, New YorkGoogle Scholar
  16. 16.
    Bach RL, Caswell RS (1968) Radiat Res 35(1):1CrossRefGoogle Scholar
  17. 17.
    Chikaoui K, Izer rouken M, Djebara M, Abdesselam M (2017) Radiat Phys Chem 130:431Google Scholar
  18. 18.
    Galehdari NA, Kelkar A (2017) J Mater Res 32:426CrossRefGoogle Scholar
  19. 19.
    Gourdin WH, Datte P, Jensen W, Khater H, Pearson M, Girard S, Paillet P, Alozy E (2016) Fusion Eng Des 112:343CrossRefGoogle Scholar
  20. 20.
    Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Physica E 65:17CrossRefGoogle Scholar
  21. 21.
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) Nat Mater 12:1038CrossRefGoogle Scholar
  22. 22.
    Qiu J, He D, Sun M, Li S, Wen C, Hattrick-Simpers J, Zheng YF, Cao L (2015) Nucl Instrum Methods Phys Res B 345:27CrossRefGoogle Scholar
  23. 23.
    Uusi-Simola J, Savolainen S, Kangasmaki A, Heikkinen S, Perkio J, Abo Ramadan U, Seppal T, Karila J, Seren T, Kotiluoto P, Sorvari P, Auterinen I (2003) Phys Med Biol 48 2895Google Scholar
  24. 24.
    Srivastava AK, Virk HS (2004) Radiat Phys Chem 59:31CrossRefGoogle Scholar
  25. 25.
    Damask AC (1958) J Phys Chem Solids 4:177CrossRefGoogle Scholar
  26. 26.
    Laghari JR, Hammound AN (1990) IEEE Trans Nucl Sci 37(2):1076CrossRefGoogle Scholar
  27. 27.
    Alexander P, Charlesby A, Ross M (1954) Proc Royal Society A 223:1154Google Scholar
  28. 28.
    Griffith RV Hankins DE, Gammage RB, Tommasino L, Wheeler RV (1979) Health Phys 36(3)Google Scholar
  29. 29.
    Prasher S, Singh S (2003) Radiat Meas 36(1):105CrossRefGoogle Scholar
  30. 30.
    Singh S, Prasher S (2004) Nucl Instrum Methods Phys Res B 222:518CrossRefGoogle Scholar
  31. 31.
    Fleischer RL, Price PB, Symes EM (1964) Science 143:249CrossRefGoogle Scholar
  32. 32.
    Nouh SA, Abdel Salam MH, Ahmed Morsy A (2003) Radiat Meas 37:25CrossRefGoogle Scholar
  33. 33.
    Paulmier T, Dirassen B, Arnaout M, Payan D, Balcon N (2014) Spacecraft Charging Technology Conference 2014 (13th SCTC), Jun 2014, PASADENA, United States. hal-01081923, version 1Google Scholar
  34. 34.
    Tabata M, Sohma J (1977) In: Grassie N (ed) Developments in polymer degradation, 7 edn. Elsevier Applied Science Publisher, England, p 158Google Scholar
  35. 35.
    Farmer FT (1942) Nature 150:521CrossRefGoogle Scholar
  36. 36.
    Fowler JF, Farmer FT (1954) Nature 174:136CrossRefGoogle Scholar
  37. 37.
    Mishra R, Tripathy SP, Dwivedi KK, Khathing DT, Ghosh S, Muller M, Fink D (2003) Radiat Meas 36:621CrossRefGoogle Scholar
  38. 38.
    Nouh SA, Abdel Naby A, El Hussieny HM (2007) Appl Radiat Isot 65:1173CrossRefGoogle Scholar
  39. 39.
    Prasher S, Kumar M, Singh S (2015) Orient J Chem 31(2):1201CrossRefGoogle Scholar
  40. 40.
    Goddard PE, Urbach F (1952) J Chem Phys 20:1975CrossRefGoogle Scholar
  41. 41.
    Basha AF, Basha MAF (2017) J Appl Phys 122:235104CrossRefGoogle Scholar
  42. 42.
    Kamath RM, Barlow A (1965) Anal Chem 37:1266CrossRefGoogle Scholar
  43. 43.
    Kondo M, Dole M (1966) J Phys Chem 70(3):883CrossRefGoogle Scholar
  44. 44.
    Malek MA, Chong CS (2002) Radiat Meas 35:203CrossRefGoogle Scholar
  45. 45.
    Yamauchi T, Nakai H, Somaki Y, Oda K (2003) Radiat Meas 36(1–6):99CrossRefGoogle Scholar
  46. 46.
    Shen-Kan I, Pravednikov A, Medvedev S (1958) Dokl Akad Nauk SSSR 122:254Google Scholar
  47. 47.
    Ferain E, Legras R (1993) Nucl Instrum Methods B 82:539Google Scholar
  48. 48.
    Steckenreiter T, Balanzat E, Fuess H, Trautmann C (1999) J Polym Sci A Polym Chem 37:4318CrossRefGoogle Scholar
  49. 49.
    Abdel-Fattah AA, Ebraheem S, Ali ZI, Abdel-Rehim F (1998) J Appl Polym Sci 67:1837Google Scholar
  50. 50.
    Abdel-Hady EE, Abdel-Hamid HM, Mohamed HFM (2004) Radiat Meas 38:211CrossRefGoogle Scholar
  51. 51.
    Barillon R, Yamauchi T (2003) Nucl Instrum Method B 208:336CrossRefGoogle Scholar
  52. 52.
    Hama Y, Oka T, Kodoh H, Seguchi M (2003) Nucl Instrum Methods B 208:123CrossRefGoogle Scholar
  53. 53.
    Nouh SA, Mohamed A, Bahammam S (2009) Nucl Instrum Methods Phys Res B 267:2427Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsKanya Maha VidhayalyaJalandharIndia
  2. 2.Department of PhysicsLovely Professional UniversityChaheru, PhagwaraIndia

Personalised recommendations