Multi-disciplinary Engineering of Production Systems – Challenges for Quality of Control Software

  • Arndt LüderEmail author
  • Johanna-Lisa Pauly
  • Konstantin Kirchheim
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 338)


Production systems and their inherent control systems are developed within an increasingly multi-disciplinary and increasingly complex engineering process which is, in addition, increasingly interlinked with the other life cycle phases of the production system. Surely this will have consequences for efficiency and correctness of the control system engineering.

Within this paper bordering conditions and challenges of this multi-disciplinary engineering process will be discussed and a centralized data logistics will be presented as one possible mean for handling the identified challenges. Thereby, requirements to the further development in the field of standardized data exchange are discussed possibly supported by software industry.


Multi-disciplinary engineering Production system control Engineering quality and efficiency 



The financial support one the one hand by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development and on the other hand by the German Federal Ministry of economic Affairs and Energy within the PAICE program are gratefully acknowledged.


  1. 1.
    Biffl, S., Lüder, A., Gerhard, D. (eds.): Multi-Disciplinary Engineering for Cyber-Physical Production Systems. Springer, Cham (2017). ISBN 978-3-319-56344-2CrossRefGoogle Scholar
  2. 2.
    VDI/VDE: Industrie 4.0 -Wertschöpfungsketten, VDI/VDE Gesellschaft Mess- und Automatisierungs-technik, Status Report, April 2014Google Scholar
  3. 3.
    Vogel-Heuser, B.: Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.4. SRT, pp. 33–44. Springer, Heidelberg (2017). Scholar
  4. 4.
    Strahilov, A., Hämmerle, H.: Engineering workflow and software tool chains of automated production systems. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 207–234. Springer, Cham (2017). Scholar
  5. 5.
    Lüder, A., Schmidt, N.: Challenges of mechatronical engineering of production systems: an automation system engineering view. In: Ghezzi, L., Hömberg, D., Landry, C. (eds.) Math for the Digital Factory. MI, vol. 27, pp. 93–114. Springer, Cham (2017). Scholar
  6. 6.
    Hell, K.: Methoden der projektübergreifenden Wie-derverwendung im Anlagenentwurf, Ph.D. thesis, Otto-v.-Guericke University, Magdeburg, Germany, March 2018Google Scholar
  7. 7.
    Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer, Heidelberg (2007). Scholar
  8. 8.
    Lüder, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, S.: Aggregation of engineering processes regarding the mechatronic approach. In: 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2011), Proceedings-CD, Toulouse, France, September 2011Google Scholar
  9. 9.
    Diedrich, Ch., Lüder, A., Hundt, L.: Bedeutung der Interoperabilität bei Entwurf und Nutzung von automatisierten Produktionssystemen. at –Automatisierungstechnik 59(7), 426–438 (2011)CrossRefGoogle Scholar
  10. 10.
    Wolff, D., Hundt, L., Dreher, S.: Requirements on the engineering of advanced standby strategies in automobile production. In: 11th Global Conference on Sustainable Manufacturing, Proceedings, Berlin, Germany, pp. 165–170, September 2013Google Scholar
  11. 11.
    Kaufmann, U., Pfenning, M.: Was die Produkt- von der Softwareentwicklung lernen kann. In: Tag des Systems Engineering 2014, Proceedings, pp. 329–337. Hanser VerlagGoogle Scholar
  12. 12.
    Fischer, S.: Agilität, Agile HR Konferenz, Köln, Deutschland, April 2016.
  13. 13.
    Kagermann, H., Wahlster, W., Helbig, J. (eds.) Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0 – Deutschlands Zukunft als Industriestandort sichern, Forschungsunion Wirtschaft und Wissenschaft, Arbeitskreis Industrie 4.0 (2013). Accessed Apr 2018
  14. 14.
    Lüder, A., Pauly, J., Rosendahl, R., Biffl, S., Rinker, F.: Support for engineering chain migration towards multi-disciplinary engineering chains. In: 14th IEEE International Conference on Automation Science and Engineering (CASE 2018), Proceedings, Munich, Germany (2018)Google Scholar
  15. 15.
    Winkler, D., Biffl, S., Steininger, H.: Integration von heterogenen Engineering Daten mit AutomationML und dem AML.hub: Konsistente Daten über Fachbereichs-grenzen hinweg, develop3 systems engineering, vol. 3 pp. 62–64 (2015)Google Scholar
  16. 16.
    Mordinyi, R., Winkler, D., Ekaputra, F.J., Wimmer, M., Biffl, S.: Investigating model slicing capabilities on integrated plant models with AutomationML. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2016), Proceedings-CD, Berlin, Germany, September 2016Google Scholar
  17. 17.
    Winkler, D., Wimmer, M., Berardinelli, L., Biffl, S.: Towards model quality assurance for multi-disciplinary engineering. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pp. 433–457. Springer, Cham (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arndt Lüder
    • 1
    Email author
  • Johanna-Lisa Pauly
    • 1
  • Konstantin Kirchheim
    • 1
  1. 1.Otto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations