A New Sustainable Interchain Design on Transport Layer for Blockchain

  • Jing WuEmail author
  • Xin Cui
  • Wei Hu
  • Keke Gai
  • Xing Liu
  • Kai Zhang
  • Kai Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11373)


Blockchain is the technology architecture to provide reliable and trustworthy services for the transactions on Internet. Blockchain can remove the middleman or the third parties from the chain of the transactions, which will make the sellers and buyers complete the transactions directly without the help from the other parties. When blockchains are widely used in different areas, a problem is emerging: how to exchange the information among different blockchains. Traditionally, a public blockchain is used to link to the two blockchains which need to exchange their information. Such design can provide a solution to the cross-chain problem. However, there will be three blockchains involved in the data exchange. In this article, a cross-chain protocol is proposed to solve the cross-chain problem. This cross-chain protocol is called Unitary Interchain Network Protocol on Transport Layer (UINP), which supports cross-chain mechanism from the transport-layer. UINP is used in Unitary Blockchain network, and it can give the low latency convenience to blockchain networks that built on the application-layer.


Blockchain Network protocol-transport layer UINP application-layer protocol UINP transport-layer protocol 


  1. 1.
    Juan, F., Galvez, J., Me, J.: Future challenges on the use of blockchain for food traceability analysis. J. Comput. Sci. Technol. 33(3), 527–537 (2018)Google Scholar
  2. 2.
    Fu, L., Wu, X., Hu, Z., Fu, X., Wang, X.: De-anonymizing social networks with overlapping community structure. CoRR, abs/1712.04282 (2017)Google Scholar
  3. 3.
    Zheng, B., Zhu, L., Shen, M.: Scalable and privacy-preserving data sharing based on blockchain. J. Comput. Sci. Technol. 33(3), 557–567 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yuan, R., Xia, Y., Chen, H.: Private smart contract on public blockchain. J. Comput. Sci. Technol. 33(3), 542–556 (2018)CrossRefGoogle Scholar
  5. 5.
    Dorr, A., Steger, M., Kanhe, S., Jurdak, R.: A distributed solution to automotive security and privacy. IEEE Commun. Mag. 55(12), 119–125 (2017)CrossRefGoogle Scholar
  6. 6.
    Huckle, S., Bhattacharya, R., White, M., Beloff, N.: Internet of things, blockchain and shared economy applications. In: The 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated Workshops, 19–22 September 2016, London, United Kingdom, pp. 461–466 (2016)Google Scholar
  7. 7.
    Münsing, E., Mather, J., Moura, S.: Blockchains for decentralized optimization of energy resources in microgrid networks. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 2164–2171 (2017)Google Scholar
  8. 8.
    Ma, Z.: Digital rights management: model, technology and application. China Commun. 14(6), 156–167 (2017)CrossRefGoogle Scholar
  9. 9.
    Mettler, M.: Blockchain technology in healthcare: The revolution starts here. In: 18th IEEE International Conference on e-Health Networking, Applications and Services, Healthcom 2016, Munich, Germany, 14–16 September 2016, pp. 1–3 (2016)Google Scholar
  10. 10.
    Mylrea, M., Gourisetti, S.: Blockchain for smart grid resilience: exchanging distributed energy at speed, scale and security. In: 2017 Resilience Week (RWS), Wilmington, USA, pp. 18–23 (2017)Google Scholar
  11. 11.
    Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 839–858 (2016)Google Scholar
  12. 12.
    Meidan, A., García-García, J.A., Cuaresma, M.J.E., Ramos, I.M.: A survey on business processes management suites. Comput. Stan. Interfaces 51, 71–86 (2017)CrossRefGoogle Scholar
  13. 13.
    Käll, J.: Blockchain control. Law Critique 29(2), 133–140 (2018)CrossRefGoogle Scholar
  14. 14.
    Zhang, A., Lin, X.: Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain. J. Med. Syst. 42(8), 140 (2018)CrossRefGoogle Scholar
  15. 15.
    Gai, K., Qiu, M., Zhao, H.: Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. J. Parallel Distrib. Comput. 111, 126–135 (2018)CrossRefGoogle Scholar
  16. 16.
    Gai, K., Qiu, M., Ming, Z., Zhao, H., Qiu, L.: Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Trans. Smart Grid 8(5), 2431–2439 (2017)CrossRefGoogle Scholar
  17. 17.
    Gai, K., Choo, K.R., Qiu, M., Zhu, L.: Privacy-preserving content-oriented wireless communication in internet-of-things. IEEE Internet Things J. 5(4), 3059–3067 (2018)CrossRefGoogle Scholar
  18. 18.
    Gai, K., Qiu, M., Xiong, Z., Liu, M.: Privacy-preserving multi-channel communication in edge-of-things. Future Gener. Comput. Syst. 85, 190–200 (2018)CrossRefGoogle Scholar
  19. 19.
    Pappalardo, G., Di Matteo, T., Caldarelli, G., Aste, T.: Blockchain inefficiency in the bitcoin peers network. EPJ Data Sci. 7(1), 30 (2018)CrossRefGoogle Scholar
  20. 20.
    Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015). Scholar
  21. 21.
    Kim, H.W., Jeong, Y.S.: Secure authentication-management human-centric scheme for trusting personal resource information on mobile cloud computing with blockchain. Hum.-Centric Comput. Inf. Sci. 8(1), 11 (2018)CrossRefGoogle Scholar
  22. 22.
    Gai, K., Qiu, M.: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers. IEEE Trans. Ind. Inf. 14(8), 3590–3598 (2017)CrossRefGoogle Scholar
  23. 23.
    Herian, R.: Taking blockchain seriously. Law Critique 29(2), 163–171 (2018)CrossRefGoogle Scholar
  24. 24.
    Griggs, K.N., Ossipova, O., Kohlios, C.P., Baccarini, A.N., Howson, E.A., Hayajneh, T.: Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. J. Med. Syst. 42(7), 130 (2018)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Song, Y.: Secure cloud-based EHR system using attribute-based cryptosystem and blockchain. J. Med. Syst. 42(8), 152 (2018)CrossRefGoogle Scholar
  26. 26.
    Eyal, I., Gencer, A.E., Sirer, E.G., Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA, 16–18 March 2016, pp. 45–59 (2016)Google Scholar
  27. 27.
    Zhu, L., Yulu, W., Gai, K., Choo, K.-K.R.: Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 91, 527–535 (2019)CrossRefGoogle Scholar
  28. 28.
    Gai, K., Qiu, M., Zhao, H., Tao, L., Zong, Z.: Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. J. Netw. Comput. Appl. 59(C), 46–54 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jing Wu
    • 1
    • 2
    Email author
  • Xin Cui
    • 3
  • Wei Hu
    • 1
    • 2
  • Keke Gai
    • 4
  • Xing Liu
    • 1
  • Kai Zhang
    • 1
  • Kai Xu
    • 4
  1. 1.College of Computer ScienceWuhan University of Science and TechnologyWuhanChina
  2. 2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial SystemWuhanChina
  3. 3.UINP LabHangzhouChina
  4. 4.School of Computer Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations