How to Detect and Contain Suspicious Transactions in Distributed Ledgers

  • Ralph DetersEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11373)


Distributed Ledger Technology (DLT) like Blockchain Technology (BCT) enables the development of trust-free P2P networks, consisting of nodes that process and propagate transactions in form of messages. Trust into other nodes and/or messages is replaced by trust into the protocols that are governing the network; most notably the message signature and consensus protocols. Depending on the chosen consensus protocols, resilience towards malicious/faulty nodes and messages ranges between \( {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}\,\text{and}\,{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}} - 1 \) of all nodes. However, an often overlooked aspect within the resilience/security aspects of DLT networks is that they tend to interact with other components that are often less resilient e.g. clients/wallets. This, in turn, allows attackers to issue forged transactions that are formally correct. This paper focuses on detecting and containing such transaction using metadata and event propagation.


Distributed ledger Blockchain Malicious transactions Fraud Awareness Metadata 


  1. 1.
    Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)CrossRefGoogle Scholar
  2. 2.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)Google Scholar
  3. 3.
    Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and privacy: the case study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618–623. IEEE (2017)Google Scholar
  4. 4.
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)CrossRefGoogle Scholar
  6. 6.
    Hernández-Ramos, J.L., Jara, A.J., Marın, L., Skarmeta, A.F.: Distributed capability-based access control for the internet of things. J. Internet Serv. Inf. Secur. (JISIS) 3(3/4), 1–16 (2013)Google Scholar
  7. 7.
  8. 8.
    Debreceny, R.S., Gray, G.L.: Data mining journal entries for fraud detection: an exploratory study. Int. J. Account. Inf. Syst. 11(3), 157–181 (2010)CrossRefGoogle Scholar
  9. 9.
    Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In: Proceedings of the 20th National Information Systems Security Conference, vol. 377, pp. 366–380, Baltimore, USA (1997)Google Scholar
  10. 10.
    Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detection. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 80–93. Springer, Heidelberg (2000). Scholar
  11. 11.
    Kosba, A.E., et al.: How to use SNARKs in universally composable protocols. IACR Cryptol. ePrint Arch. 2015, 1093 (2015)Google Scholar
  12. 12.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  13. 13.
    Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAccess: a new Blockchain-based access control framework for the Internet of Things. Security and Communication Networks 9(18), 5943–5964 (2016)CrossRefGoogle Scholar
  14. 14.
    Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies. Advances in Intelligent Systems and Computing, vol. 520. Springer, Cham (2017). Scholar
  15. 15.
    Faisal, T., Courtois, N., Serguieva, A.: The evolution of embedding metadata in blockchain transactions. arXiv preprint arXiv:1806.06738 (2018)
  16. 16.
    Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Advances in computers, vol. 46, pp. 329–400. Elsevier (1998)Google Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 1, 41–50 (2003)CrossRefGoogle Scholar
  21. 21.
    Murch, R.: Autonomic Computing. IBM Press (2004)Google Scholar
  22. 22.
    Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. (CSUR) 40(3), 7 (2008)CrossRefGoogle Scholar
  23. 23.
    Nygate, Y.A.: Event correlation using rule and object based techniques. In: Sethi, A.S., Raynaud, Y., Faure-Vincent, F. (eds.) Integrated Network Management IV. Springer, Boston (1995). Scholar
  24. 24.
    Buchmann, A., Koldehofe, B.: Complex event processing. IT-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik 51(5), 241–242 (2009)Google Scholar
  25. 25.
    Deters, R.: Case-based diagnosis of multiple faults. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 411–420. Springer, Heidelberg (1995). Scholar
  26. 26.
    Fadhil, M., Owen, G., Adda, M.: Bitcoin network measurements for simulation validation and parameterization. In: 11th International Network Conference, INC 2016. University of Plymouth (2016)Google Scholar
  27. 27.
    Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). Scholar
  28. 28.
    Mahalle, P.N., Anggorojati, B., Prasad, N.R., Prasad, R.: Identity authentication and capability based access control (IACAC) for the internet of things. J. Cyber Secur. Mobil. 1(4), 309–348 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations