A Blockchain-Based Data Hiding Method for Data Protection in Digital Video

  • Hongguo Zhao
  • Yunxia LiuEmail author
  • Yonghao Wang
  • Xiaoming Wang
  • Jiaxuan Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11373)


The protection of secret data based on data hiding technique provides the basic security services for digital video through network transmission. However, the video with secret data is stored with centralized storage, which is vulnerable from external centralized attacks, such as the loss and tampering of the digital video. The protection of copyright and privacy data for digital video is still open issues. In this paper, we propose a blockchain-based data hiding method for data protection in digital video. To improve the integrity certification of secret data and the video, we combined the blockchain and data hiding techniques by adding the hash value to the block with a traceable hash value record; to improve the protection level of privacy data such as copyright related to digital video, we designed a DCT-based data hiding scheme which interact with the blockchain record, where the external chain is utilized as the controller for the privacy data into carrier video. Similar to Bitcoin, This system removes the need for a trusted third party, enabling autonomous control of privacy data.


Data protection Data hiding Blockchain 


  1. 1.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  2. 2.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). ConsultedGoogle Scholar
  3. 3.
    Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). Scholar
  4. 4.
    Zhu, W., Luo, C., Wang, J., Li, S.: Multimedia cloud computing. IEEE Signal Proc. Mag. 23(3), 59–69 (2011)CrossRefGoogle Scholar
  5. 5.
    Sze, V., Budagavi, M.: High throughput CABAC entropy coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1778–1791 (2012)CrossRefGoogle Scholar
  6. 6.
    Tew, Y., Wong, K.S.: An overview of information hiding in H. 264/AVC compressed video. IEEE Trans. Circuits Syst. Video Technol. 24(2), 305–319 (2014)CrossRefGoogle Scholar
  7. 7.
    Ha, P.H., Tsigas, P., Anshus, O.J., Sname, F.: SocioNet: a social-based multimedia access system for unstructured P2P networks. IEEE T. Parall. Distr. 21(7), 1027–1041 (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, A.D., Du, X.H., Wang, N., Li, S.Z.: Research progress of blockchain technology and its application in information security. Journal of Software (2018)Google Scholar
  9. 9.
    Bogner, A., Chanson, M., Meeuw, A.: A decentralised sharing app running a smart contract on the ethereum blockchain. In: International Conference, pp. 177–178 (2016)Google Scholar
  10. 10.
    Kosba, A., Miller, A., Shi, E., et al.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: Proceedings of the 2016 IEEE Symposium on Security and Privacy. Piscataway, NJ, pp. 839–858. IEEE (2016)Google Scholar
  11. 11.
    Monero: A note on chain reactions in traceability in Cryptonote 2.0 (2017).
  12. 12.
    Miers, I., Garman, C., Green, M., et al.: Zerocoin: anonymous distributed E-cash from bitcoin. In: IEEE Symposium on Security and Privacy Conference, Piscataway, NJ, pp. 397–411. IEEE (2014)Google Scholar
  13. 13.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, Juan A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). Scholar
  14. 14.
    Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: International Conference on Open and Big Data, pp. 25–30 (2016).
  15. 15.
    Neisse, R., Steri, G., Naifovino, I.: A blockchain-based approach for data accountability and provenance tracking. In: International Conference on Availability, Reliability and Security, p. 14. ACM (2017)Google Scholar
  16. 16.
    Lazarovich, A.: Invisible ink, blockchain for data privacy, Massachusetts Institute of Technology, Boston, Massachusetts (2015)Google Scholar
  17. 17.
    Zyskind, G., Nathan. O., Pentland, A.: Enigma: decentralized computation platform with guaranteed privacy. Computer Science (2015)Google Scholar
  18. 18.
    Kumar, M., Agrawal, S.: Reversible data hiding based on prediction error expansion using adjacent pixels. Secur. Commun. Netw. 9(16), 3703–3712 (2016)CrossRefGoogle Scholar
  19. 19.
    Rad, R.M., Wong, K., Guo, J.-M.: Reversible data hiding by adaptive group modification on histogram of prediction errors. Signal Process. 125 C, 315–328 (2016)CrossRefGoogle Scholar
  20. 20.
    Mstafa, R.J., Elleithy, K.M., Abdelfattah, E.: A robust and secure video steganography method in DWT-DCT domains based on multiple object tracking and ECC. IEEE Access PP(99), 1 (2017)CrossRefGoogle Scholar
  21. 21.
    Ma, X.J., Li, Z.T., Lv, J.L., Wang, W.D.: Data hiding in H.264/AVC streams with limited intra-frame distortion drift. In: International Symposium on Computer Network and Multimedia Technology, pp. 1–5 (2009)Google Scholar
  22. 22.
    Ma, X.J., Li, Z.T., Tu, H., Zhang, B.: Data hiding agorithm for H.264/AVC video streams without intra frame distortion drift. IEEE Trans. Circuits Syst. Video Technol. 20(10), 1320–1330 (2010)CrossRefGoogle Scholar
  23. 23.
    Swati, S., Hayat, K., Shahid, Z.: A watermarking scheme for high efficiency video coding (HEVC). PLoS One 9(8), e105613 (2014). Scholar
  24. 24.
    Liu, Y.X., Li, Z.T., Ma, X.J., Liu, J.: A robust without intra-frame distortion drift data hiding algorithm based on H.264/AVC. Multimed. Tools Appl. 72(1), 613–636 (2014)CrossRefGoogle Scholar
  25. 25.
    Liu, Y.X., Jia, S.M., Hu, M.S., Jia, Z.J., Chen, L., Zhao, H.G.: A reversible data hiding method for H.264 with Shamir’s (t, n)-threshold secret sharing. Neurocomputing 188, 63–70 (2016)CrossRefGoogle Scholar
  26. 26.
    Yoo, H., Jung, J., Jo, J., Park, I.C.: Area-efficient multimode encoding architecture for long BCH codes. IEEE Trans. Circuits Syst. II Express Briefs 60(12), 872–876 (2013)CrossRefGoogle Scholar
  27. 27.
    Liu, Y.X., Ju, L.M., Hu, M.S.: A new data hiding method for H.264 based on secret sharing. Neurocomputing (2015)Google Scholar
  28. 28.
    Bhowmik, D., Feng, T.: The multimedia blockchain: a distributed and tamper-proof media transaction framework. In: International Conference on Digital Signal Processing (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hongguo Zhao
    • 1
  • Yunxia Liu
    • 1
    Email author
  • Yonghao Wang
    • 2
  • Xiaoming Wang
    • 3
  • Jiaxuan Li
    • 3
  1. 1.College of Information Science and TechnologyZhengzhou Normal UniversityZhengzhouChina
  2. 2.Computing and Digital Technology, Birmingham City UniversityBirminghamUK
  3. 3.High Performance Blockchain Foundation LTDBeijingChina

Personalised recommendations