Advertisement

Mapping the Antioxidant Activity of Apple Peels with Soft Probe Scanning Electrochemical Microscopy

  • Tzu-En LinEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Antioxidants (AOs) are well-known beneficial dietaries for reducing the risks of cardiovascular disease and cancer [1, 2]. They also protect fruits from oxidative stress caused by unfavorable external environments such as drought, chilling injury, UV radiation or pathogen attack [3, 4, 5, 6]. Hence, AOs in fruits are generally more concentrated in the peel than in the flesh representing a major fruit protection barrier [7, 8]. Several enzymatically assisted mechanisms provide a certain degree of regeneration of AOs after the AOs degradation by free radicals. Consequently, the AO concentration in the peel is a quantitative indicator for the status of the AO defense system of the fruit.

References

  1. 1.
    H.N. Siti, Y. Kamisah, J. Kamsiah, Vascul. Pharmacol. 71, 40–56 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Fuchs-Tarlovsky, Nutrition 29, 15–21 (2013)CrossRefGoogle Scholar
  3. 3.
    B.L. Halvorsen, K. Holte, M.C.W. Myhrstad, I. Barikmo, E. Hvattum, S.F. Remberg, A.-B. Wold, K. Haffner, H. Baugerød, L.F. Andersen et al., J. Nutr. 132, 461–471 (2002)CrossRefGoogle Scholar
  4. 4.
    K. Wolfe, X. Wu, R.H. Liu, J. Agric. Food Chem. 51, 609–614 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Łata, Sci. Hortic. 117, 45–52 (2008)CrossRefGoogle Scholar
  6. 6.
    K.E. Hummer, J.F. Hancock, HortScience 50, 780–783 (2015)Google Scholar
  7. 7.
    K.L. Wolfe, R.H. Liu, J. Agric. Food Chem. 51, 1676–1683 (2003)CrossRefGoogle Scholar
  8. 8.
    B. Łata, J. Agric. Food Chem. 55, 663–671 (2007)CrossRefGoogle Scholar
  9. 9.
    R.H. Liu, M.V. Eberhardt, C.Y. Lee, Nature 405, 903–904 (2000)PubMedGoogle Scholar
  10. 10.
    C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, Y. Jiang, Nutr. Res. 23, 1719–1726 (2003)CrossRefGoogle Scholar
  11. 11.
    L. Panzella, M. Petriccione, P. Rega, M. Scortichini, A. Napolitano, Food Chem. 672–679 (2013)Google Scholar
  12. 12.
    Y.Z. Fang, S. Yang, G. Wu, Nutrition 18, 872–879 (2002)CrossRefGoogle Scholar
  13. 13.
    G. Noctor, C.H. Foyer, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279 (1998)CrossRefGoogle Scholar
  14. 14.
    K.W. Lee, Y.J. Kim, D.O. Kim, H.J. Lee, C.Y. Lee, J. Agric. Food Chem. 51, 6516–6520 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Kalinowska, A. Bielawska, H. Lewandowska-Siwkiewicz, W. Priebe, W. Lewandowski, Plant Physiol. Biochem. 84(169e), 188 (2014)Google Scholar
  16. 16.
    F. Shahidi, Y. Zhong, J. Funct. Foods 18, 757–781 (2015)CrossRefGoogle Scholar
  17. 17.
    J.B.L. Tan, Y.Y. Lim, Food Chem. 172, 814–822 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Seawan, W. Vichit, A. Thakam, P. Chaiwut, P. Pintathong, Suranaree J. Sci. Technol. 21, 301–306 (2014)Google Scholar
  19. 19.
    V.V. Roshchina, J. Fluoresc. 13, 403–418 (2003)CrossRefGoogle Scholar
  20. 20.
    A.A. Karaçelik, M. Küçük, Z. Iskefiyeli, S. Aydemir, S. DeSmet, B. Miserez, P. Sandra, Food Chem. 175, 106–114 (2015)CrossRefGoogle Scholar
  21. 21.
    S.F. Hagen, K.A. Solhaug, G.B. Bengtsson, G.I.A. Borge, W. Bilger, Postharvest Biol. Technol. 41, 156–163 (2006)CrossRefGoogle Scholar
  22. 22.
    D.L. Betemps, J.C. Fachinello, S.P. Galarça, N.M. Portela, D. Remorini, R. Massai, G. Agati, J. Sci. Food Agric. 92, 1855–1864 (2012)CrossRefGoogle Scholar
  23. 23.
    M.N. Merzlyak, A.E. Solovchenko, A.I. Smagin, A.A. Gitelson, J. Plant Physiol. 162, 151–160 (2005)CrossRefGoogle Scholar
  24. 24.
    P. Tacchini, A. Lesch, A. Neequaye, G. Lagger, J. Liu, F. Cortés-Salazar, H.H. Girault, Electroanalysis 25, 922–930 (2013)CrossRefGoogle Scholar
  25. 25.
    M.F. Barroso, N. De-los-Santos-Állvarez, C. Delerue-Matos, M.B.P.P. Oliveira, Biosens. Bioelectron. 30, 1–12 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Li, F. Zhao, L. Yue, S. Li, F. Xiao, Electroanalysis 28, 1003–1011 (2016)CrossRefGoogle Scholar
  27. 27.
    K.Z. Brainina, D.P. Varzakova, E.L. Gerasimova, J. Anal. Chem. 67, 364–369 (2012)CrossRefGoogle Scholar
  28. 28.
    R. de Q. Ferreira, S.J. Greco, M. Delarmelina, K.C. Weber, Electrochim. Acta 163, 161–166 (2015)Google Scholar
  29. 29.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  30. 30.
    T.-E. Lin, Y.-J. Lu, C.-L. Sun, J.-P. Chen, A. Lesch, H.H. Girault, Angew. Chem. Int. Ed. 56, 16498–16502 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Rapino, R. Marcu, A. Bigi, A. Soldà, M. Marcaccio, F. Paolucci, P.G. Pelicci, M. Giorgio, Electrochim. Acta 179, 65–73 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Kuss, D. Trinh, J. Mauzeroll, Anal. Chem. 87, 8102–8106 (2015)CrossRefGoogle Scholar
  33. 33.
    T.-E. Lin, A. Lesch, C.-L. Li, H.H. Girault, J. Electroanal. Chem. 786, 120–128 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Lesch, D. Momotenko, F. Cortés-Salazar, F. Roelfs, H.H. Girault, G. Wittstock, Electrochim. Acta 110, 30–41 (2013)CrossRefGoogle Scholar
  35. 35.
    Z. Ju, W.J. Bramlage, Postharvest Biol. Technol. 16, 107–118 (1999)CrossRefGoogle Scholar
  36. 36.
    B. Lertanantawong, A.P. O’Mullane, J. Zhang, W. Surareungchai, M. Somasundrum, A.M. Bond, Anal. Chem. 80, 6515–6525 (2008)CrossRefGoogle Scholar
  37. 37.
    J.L.J. Bezuidenhout, P.J. Robbertse, C. Kaiser, J. Hortic. Sci. Biotechnol. 80, 18–22 (2005)CrossRefGoogle Scholar
  38. 38.
    H. Rymbai, M. Srivastav, R.R. Sharma, S.K. Singh, Sci. Hortic. 135, 164–170 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de LausanneSionSwitzerland

Personalised recommendations