Advertisement

Multiple SECM Mapping of Tyrosinase in Micro-contact Printed Fruit Samples on Polyvinylidene Fluoride Membrane

  • Tzu-En LinEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Tyrosinase is a copper-containing enzyme known for catalyzing the hydroxylation of monophenols and their oxidation to the respective quinones in the presence of oxygen. Furthermore, tyrosinase is directly involved in fruit ripening, in the biosynthesis of the skin pigment melanin and in skin disorders such as vitiligo (i.e. skin depigmentation due to loss of melanin). Furthermore, it is a biomarker in melanoma and its expression level is very high in some stages. Therefore, the accurate and sensitive detection of tyrosinase could provide relevant information for a better understanding of different tyrosinase-related biological processes.

References

  1. 1.
    Y. Jiang, X. Duan, D. Joyce, Z. Zhang, J. Li, Food Chem. 88, 443–446 (2004)CrossRefGoogle Scholar
  2. 2.
    V. Kahn, J. Food Sci. 50, 111–115 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.-H. Song, E. Connor, Y. Li, B. Zorovich, P. Balducci, N. Maclaren, Lancet 344, 1049–1052 (1994)CrossRefGoogle Scholar
  4. 4.
    Y.-T. Chen, E. Stockert, S. Tsang, K.A. Coplan, L.J. Old, Immunology 92, 8125–8129 (1995)Google Scholar
  5. 5.
    B.E.G. Rothberg, M.B. Bracken, D.L. Rimm, J. Natl. Cancer Inst. 101, 452–474 (2009)CrossRefGoogle Scholar
  6. 6.
    G.F.L. Hofbauer, J. Kamarashev, R. Geertsen, R. Böni, R. Dummer, J. Cutan. Pathol. 25, 204–209 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Mossberg, S. Vernick, R. Ortenberg, G. Markel, Y. Shacham-Diamand, J. Rishpon, Electroanalysis 26, 1671–1675 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Urosevic, B. Braun, J. Willers, G. Burg, R. Dummer, Exp. Dermatol. 14, 491–497 (2005)CrossRefGoogle Scholar
  9. 9.
    G.E. Orchard, Histochem. J. 32, 475–481 (2000)CrossRefGoogle Scholar
  10. 10.
    X. Feng, F. Feng, M. Yu, F. He, Q. Xu, H. Tang, S. Wang, Y. Li, D. Zhu, Org. Lett. 10, 5369–5372 (2008)CrossRefGoogle Scholar
  11. 11.
    Q. Xu, J. Yoon, Chem. Commun. 47, 12497–12499 (2011)CrossRefGoogle Scholar
  12. 12.
    C. Védrine, S. Fabiano, C. Tran-Minh, Talanta 59, 535–544 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Önnerfjord, J. Emnéus, G. Marko-Varga, L. Gorton, F. Ortega, E. Domínguez, Biosens. Bioelectron. 10, 607–619 (1995)CrossRefGoogle Scholar
  14. 14.
    B. Serra, M. DoloresMorales, J. Zhang, A.J. Reviejo, E.H. Hall, J.M. Pingarron, Anal. Chem. 77, 8115–8121 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Cosnier, S. Szunerits, R.S. Marks, J.P. Lellouche, K. Perie, J. Biochem. Biophys. Methods 50, 65–77 (2001)CrossRefGoogle Scholar
  16. 16.
    H.J. Issaq, Electrophoresis 22, 3629–3638 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Berggren, T.H. Steinberg, W.M. Lauber, J.A. Carroll, M.F. Lopez, E. Chernokalskaya, L. Zieske, Z. Diwu, R.P. Haugland, W.F. Patton, Anal. Biochem. 276, 129–143 (1999)CrossRefGoogle Scholar
  18. 18.
    T. Rabilloud, L. Vuillard, C. Gilly, J. J. Lawrence (2009)Google Scholar
  19. 19.
    V. Neuhoff, N. Arold, D. Taube, W. Ehrhardt, Electrophoresis 9, 255–262 (1988)CrossRefGoogle Scholar
  20. 20.
    M. Zhang, H.H. Girault, Analyst 134, 25–30 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Zhang, A. Becue, M. Prudent, C. Champod, H.H. Girault, Chem. Commun. 3948 (2007)Google Scholar
  22. 22.
    G. Wittstock, K.-J. Yu, H.B. Halsall, T.H. Ridgway, W.R. Heineman, Anal. Chem. 67, 3578–3582 (1995)CrossRefGoogle Scholar
  23. 23.
    A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, B. Mizaikoff, Angew. Chem. Int. Ed. 42, 3238–3240 (2003)CrossRefGoogle Scholar
  24. 24.
    D.T. Pierce, P.R. Unwin, A.J. Bard, Anal. Chem. 64, 1795–1804 (1992)CrossRefGoogle Scholar
  25. 25.
    S. Kasai, A. Yokota, H. Zhou, M. Nishizawa, K. Niwa, T. Onouchi, T. Matsue, Anal. Chem. 72, 5761–5765 (2000)CrossRefGoogle Scholar
  26. 26.
    G. Sciutto, S. Prati, R. Mazzeo, M. Zangheri, A. Roda, L. Bardini, G. Valenti, S. Rapino, M. Marcaccio, Anal. Chim. Acta 831, 31–37 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Rudolph, D. Bates, T.J. DiChristina, B. Mizaikoff, C. Kranz, Electroanalysis 28, 2459–2465 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Shiku, T. Matsue, I. Uchida, Anal. Chem. 68, 1276–1278 (1996)CrossRefGoogle Scholar
  29. 29.
    J.-M. Noel, A. Latus, C. Lagrost, E. Volanschi, P. Hapiot, J. Am. Chem. Soc. 134, 2835–2841 (2012)CrossRefGoogle Scholar
  30. 30.
    B.D. Bath, R.D. Lee, H.S. White, E.R. Scott, Anal. Chem. 70, 1047–1058 (1998)CrossRefGoogle Scholar
  31. 31.
    M. Gonsalves, A.L. Barker, J.V. Macpherson, P.R. Unwin, D. O’Hare, C.P. Winlove, Biophys. J. 78, 1578–1588 (2000)CrossRefGoogle Scholar
  32. 32.
    C.M. Sánchez-Sánchez, A.J. Bard, Anal. Chem. 81, 8094–8100 (2009)CrossRefGoogle Scholar
  33. 33.
    L. Ma, H. Zhou, S. Xin, C. Xiao, F. Li, S. Ding, Electrochim. Acta 178, 767–777 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Nebel, S. Grützke, N. Diab, A. Schulte, W. Schuhmann, Angew. Chem. Int. Ed. 52, 6335–6338 (2013)CrossRefGoogle Scholar
  35. 35.
    K.B. Holt, A.J. Bard, Biochemistry 44, 13214–13223 (2005)CrossRefGoogle Scholar
  36. 36.
    T. Kaya, Y.S. Torisawa, D. Oyamatsu, M. Nishizawa, T. Matsue, Biosens. Bioelectron. 18, 1379–1383 (2003)CrossRefGoogle Scholar
  37. 37.
    N. Géza, N. Lívia, Trends in Bioelectroanalysis (Springer, Cham, 2017), pp. 281–339Google Scholar
  38. 38.
    T.-E. Lin, F. Cortés-Salazar, A. Lesch, L. Qiao, A. Bondarenko, H.H. Girault, Electrochim. Acta 179, 57–64 (2015)CrossRefGoogle Scholar
  39. 39.
    T.C. Rohner, J.S. Rossier, H.H. Girault, Electrochem. Commun. 4, 695–700 (2002)CrossRefGoogle Scholar
  40. 40.
    F. Cortés-Salazar, J.-M. Busnel, F. Li, H.H. Girault, J. Electroanal. Chem. 635, 69–74 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Zhang, G. Wittstock, Y. Shao, H.H. Girault, Anal. Chem. 79, 4833–4839 (2007)CrossRefGoogle Scholar
  42. 42.
    B.K. Sørensen, P. Højrup, E. Østergård, C.S. Jørgensen, J. Enghild, L.R. Ryder, G. Houen, Anal. Biochem. 304, 33–41 (2002)CrossRefGoogle Scholar
  43. 43.
    J. Ji, F. Liu, N.A. Hashim, M.R.M. Abed, K. Li, React. Funct. Polym. 86, 134–153 (2015)CrossRefGoogle Scholar
  44. 44.
    S.Y. Seo, V.K. Sharma, N. Sharma, J. Agric. Food Chem. 51, 2837–2853 (2003)CrossRefGoogle Scholar
  45. 45.
    A. Dobrzeniecka, A. Zeradjanin, J. Masa, J. Stroka, M. Goral, W. Schuhmann, P.J. Kulesza, ECS Trans. 35, 33–44 (2011). (The Electrochemical Society)CrossRefGoogle Scholar
  46. 46.
    S. Gidanian, P.J. Farmer, J. Inorg. Biochem. 89, 54–60 (2002)CrossRefGoogle Scholar
  47. 47.
    G. Volpe, R. Draisci, G. Palleschi, D. Compagnone, Analyst 123, 1303–1307 (1998)CrossRefGoogle Scholar
  48. 48.
    M. Jović, Y. Zhu, A. Lesch, A. Bondarenko, F. Cortés-Salazar, F. Gumy, H.H. Girault, J. Electroanal. Chem. 786, 69–76 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de LausanneSionSwitzerland

Personalised recommendations