Ultrasound Enhanced Friction Stir Welding (USE-FSW) of Hybrid Aluminum/Steel Joints

  • Marco ThomäEmail author
  • Guntram Wagner
  • Benjamin Straß
  • Bernd Wolter
  • Sigrid Benfer
  • Wolfram Fürbeth
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Ultrasound Enhanced Friction Stir Welding (USE-FSW) is an innovative hybrid method for solid-state joining. This process resulted in remarkably positive findings in the successful realization of hybrid aluminum/magnesium joints as well as in first investigations on the microstructure of aluminum/steel joints due to the parallel and synchronous transmission of power ultrasound into one of the joining partners. The present work investigates the impact of additional power ultrasound on the mechanical properties of AA6061/SAE1006-joints by comparing FSW and USE-FSW. Therefore, light microscopy, as well as scanning electron microscopy, was carried out for examining the microstructure of the joints. Furthermore, mechanical tests on the microhardness of the weld zone of the joints as well as tensile and first fatigue tests were examined. The investigations proved an influence of the power ultrasound by a change in the morphology of the nugget. It showed to be more cleared up and also contains a thinner intermetallic phase of FeAl3 at the interface aluminum to steel. Furthermore, an increase in the tensile strength of the joints of about 15% could be observed. First stepwise load increase tests resulted in slightly different stress levels for the estimated fatigue limit.


Friction stir welding Ultrasound enhancement Dissimilar metals Fatigue 



We would like to thank the German Research Foundation (DFG) for the support of the present work as a part of the Priority Program 1640 “Joining by Plastic Deformation”.


  1. 1.
    Givi M, Asadi P (2014) Advances in friction-stir welding and processing. Elsevier Science & Technology, CambridgeGoogle Scholar
  2. 2.
    Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing. Springer International Publishing, ChamCrossRefGoogle Scholar
  3. 3.
    Tanaka T, Morishige T, Hirata T (2009) Scr Mater 61:756–759CrossRefGoogle Scholar
  4. 4.
    Uzun H, Dalle Donne C, Argagnotto A, Ghidini T, Gambaro C (2005) Mater Des 26:41–46CrossRefGoogle Scholar
  5. 5.
    Shen Z, Chen Y, Haghshenas M, Gerlich AP (2015) Eng Sci Technol Int J 18:270–277CrossRefGoogle Scholar
  6. 6.
    Watanabe T, Takayama H, Yanagisawa A (2006) J Mater Process Technol 178:342–349CrossRefGoogle Scholar
  7. 7.
    Pourali M, Abdollah-zadeh A, Saeid T, Kargar F (2017) J Alloy Compd 715:1–8CrossRefGoogle Scholar
  8. 8.
    Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Mater Sci Eng A 556:175–183CrossRefGoogle Scholar
  9. 9.
    Bang H, Bang H, Jeon G, Oh I, Ro C (2012) Mater Des 37:48–55CrossRefGoogle Scholar
  10. 10.
    Merklein M, Giera A (2008) Int J Mater Form 1:1299–1302CrossRefGoogle Scholar
  11. 11.
    Ferrando WA (2008) The concept of electrically assisted friction stir welding (EAFSW) and application to the processing of various metals. Defense Technical Information Center, Fort Belvoir, VACrossRefGoogle Scholar
  12. 12.
    Lai R, He D, Liu L, Ye S, Yang K (2014) Int J Adv Manuf Technol 73:321–327CrossRefGoogle Scholar
  13. 13.
    Liu XC, Wu CS (2015) J Mater Process Technol 225:32–44CrossRefGoogle Scholar
  14. 14.
    Rostamiyan Y, Seidanloo A, Sohrabpoor H, Teimouri R (2015) Arch Civ Mech Eng 15:335–346CrossRefGoogle Scholar
  15. 15.
    Shi L, Wu CS, Liu XC (2015) J Mater Process Technol 222:91–102CrossRefGoogle Scholar
  16. 16.
    Park K (2009) Development and analysis of ultrasonic assisted friction stir welding process. PhD thesis, The University of MichiganGoogle Scholar
  17. 17.
    Amini S, Amiri MR (2014) Int J Adv Manuf Technol 73:127–135CrossRefGoogle Scholar
  18. 18.
    Strass B, Wagner G, Conrad C, Wolter B, Benfer S, Fürbeth W (2014) Adv Mater Res 521–535Google Scholar
  19. 19.
    Klag O (2013) Mikrostruktur, mechanische Eigenschaften und Korrosionsverhalten rührreibgeschweißter AZ91, AZ91- und AZ91, AIMg3Mn-Verbunde, vol 31. Techn. Univ. Kaiserslautern, KaiserslauternGoogle Scholar
  20. 20.
    Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W (2018) J Mater Sci Technol 34:163–172CrossRefGoogle Scholar
  21. 21.
    Straß B (2015) Ultraschallunterstütztes Rührreibschweißen von Al/Mg-Verbunden. Dissertation, Technische Universität KaiserslauternGoogle Scholar
  22. 22.
    Strass B, Wagner G, Eifler D (2014) MSF 783–786:1814–1819CrossRefGoogle Scholar
  23. 23.
    Benfer S, Straß B, Wagner G, Fürbeth W (2016) Surf Interface Anal 48:843–852CrossRefGoogle Scholar
  24. 24.
    Kleppmann W, Versuchsplanung (2016) Produkte und Prozesse optimieren, 9th edn. Hanser, München, WienGoogle Scholar
  25. 25.
    Ebel-Wolf B, Walther F, Eifler D (2008) Mater Sci Eng A 486:634–640CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Marco Thomä
    • 1
    Email author
  • Guntram Wagner
    • 1
  • Benjamin Straß
    • 2
  • Bernd Wolter
    • 2
  • Sigrid Benfer
    • 3
  • Wolfram Fürbeth
    • 3
  1. 1.Institute of Materials Science and Engineering, Chemnitz University of TechnologyChemnitzGermany
  2. 2.Fraunhofer Institute for Nondestructive Testing IZFPSaarbrückenGermany
  3. 3.DECHEMA-ForschungsinstitutFrankfurt am MainGermany

Personalised recommendations