Friction Stir Processing (FSP) of Multiwall Carbon Nanotubes and Boron Carbide Reinforced Aluminum Alloy (Al 5083) Composites

  • Mahmood KhanEmail author
  • Wilayat Husain Syed
  • Shahid Akhtar
  • Ragnhild E. Aune
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Friction Stir Processing (FSP) is a novel solid-state processing technique for fabrication of high strength surface composites. In present study, FSP was used to compare the cold formability of individually reinforced, hybrid and reference FSP samples of aluminum alloy Al5083. A plate of alloy containing MultiWall Carbon NanoTubes (MWCNTs) and boron carbide particles (B4C) was processed by FSP and characterized. FSP composite containing MWCNTs was found to fracture during the bend-ductility test, while boron carbide particles reinforced FSP composites had superior cold bending formability along with the reference FSP sample. Cracking was also observed in hybrid FSP composite samples in lesser extent as compared to individually reinforced MWCNTs FSP composite. Possible cause of failure was identified as clustering of MWCNTs and weak interfacial bonding with the aluminum alloy matrix. Detailed metallographic and mechanical testing investigations revealed that the distribution of reinforcement at nanoscale and single pass processing played a vital role in generating defects and sinking of reinforcement particles in Al5083 matrix.


Friction Stir Processing (FSP) MWCNTs B4Aluminum composite 



The authors acknowledge the financial support from the Higher Education Commission of Pakistan (Grant No. 213-53249-2EG2-102) provided under the Ph.D. indigenous fellowship; Phase-II Batch-II and Norwegian University of Science and Technology (NTNU), Norway for use of their laboratory facilities for characterization of all material properties.


  1. 1.
    Mishra RS, Ma ZY (2005) Materials science and engineering: R. Reports 2005, vol 50, pp 1–78Google Scholar
  2. 2.
    Nascimento F, Santos T, Vilaga P, Miranda RM, Quintino L (2009) Mater Sci Eng A 506:16–22CrossRefGoogle Scholar
  3. 3.
    Khan M, Rehman A, Aziz T, Naveed K, Ahmad I, Subhani T (2017) Mater Sci Eng A 696:552–557CrossRefGoogle Scholar
  4. 4.
    Guru PR, Khan Md F, Panigrahi SK, Janaki Ram GD (2015) J Manufact Process 18:67–74Google Scholar
  5. 5.
    Maurya R, Kumar B, Ariharan S, Ramkumar J, Kantesh B (2016) Mater Design 98:155–166Google Scholar
  6. 6.
    Joyson Abraham S, Chandra Rao Madane S, Dinaharan I, John Baruch L (2016) J Asian Ceramic Soc 4:381–389Google Scholar
  7. 7.
    Wang W, Shi Q-Y, Liu P, Li HK, Li T (2009) J Mater Process Technol 209:2099–2103CrossRefGoogle Scholar
  8. 8.
    Azizieh M, Kokabi AH, Abachi P (2011) Mater Des 32:2034–2041CrossRefGoogle Scholar
  9. 9.
    Srinivasu R, Sambasiva Rao A, Madhusudhan Reddy G, Srinivasa Rao K (2014) Defence TechnolGoogle Scholar
  10. 10.
    Hosseini SA, Ranjbar K, Dehmolaei R, Amirani AR (2015) J Alloys Comp 622:725–733Google Scholar
  11. 11.
    Lim DK, Shibayanagi T, Gerlich AP (2009) Mater Sci Eng, A 507:194–199CrossRefGoogle Scholar
  12. 12.
    Jeon CH, Jeong YH, Seo JJ, Tien HN, Hong ST, Yum YJ, Hur SH, Lee KJ (2014) Int J Precision Eng Manufact 15:1235–1239Google Scholar
  13. 13.
    Suri AK, Subramanian C, Sonber JK, Ch Murthy TSR (2010) Int Mater Rev 55:4–40CrossRefGoogle Scholar
  14. 14.
    Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Appl Phys A 69:255–260CrossRefGoogle Scholar
  15. 15.
    Khan M, Rehman A, Aziz T, Shahzad M, Naveed K, Subhani T (2018) J Mater Process Technol 253:72–85CrossRefGoogle Scholar
  16. 16.
    McNelley TR (2010) Revista de metalurgia 46:149–156CrossRefGoogle Scholar
  17. 17.
    Lee IS, Hsu CJ, Chen CF, Ho NJ, Kao PW (2011) Composites Sci Technol 71:693–698CrossRefGoogle Scholar
  18. 18.
    Taban E, Kaluc E (2007) Kovove Mater 45:241Google Scholar
  19. 19.
    Mahmoud ERI, Ikeuchi K, Takahashi M (2008) Sci Technol Weld Joining 13:607–618CrossRefGoogle Scholar
  20. 20.
    Hansen N (2004) Scripta Mater 51:801–806CrossRefGoogle Scholar
  21. 21.
    Hosseini SA, Ranjbar K, Dehmolaei R, Amirani AR (2015) J Alloys Compounds 622:725–733Google Scholar
  22. 22.
    Liu Q, Ke L, Liu F, Huang C, Xing L (2013) Mater Des 45:343–348CrossRefGoogle Scholar
  23. 23.
    Shahraki S, Khorasani S, Behnagh RA, Fotouhi Y, Bisadi H (2013) Metallurg Mater Trans B 44:1546–1553Google Scholar
  24. 24.
    Guo JF, Liu J, Sun CN, Maleksaeedi S, Bi G, Tan MJ, Wei J (2014) Mater Sci Eng A 602:143–149CrossRefGoogle Scholar
  25. 25.
    Du Z, Tan MJ, Guo JF, Bi G, Wei J (2016) Mater Sci Eng A 667:125–131Google Scholar
  26. 26.
    George R, Kashyap KT, Rahul R, Yamdagni S (2005) Scripta Mater 53:1159–1163CrossRefGoogle Scholar
  27. 27.
    Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Carbon 69:264–274CrossRefGoogle Scholar
  28. 28.
    Deng C, Zhang X, Wang D, Lin Q, Li A (2007) Mater Lett 61:1725–1728CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mahmood Khan
    • 1
    • 2
    Email author
  • Wilayat Husain Syed
    • 1
  • Shahid Akhtar
    • 3
  • Ragnhild E. Aune
    • 2
  1. 1.Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  2. 2.Department of Materials Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  3. 3.Norsk Hydro, Karmåy Primary ProductionHåvikNorway

Personalised recommendations