Advertisement

Proposal of Dosing of Mortars Using Simplex Network

  • M. T. MarvilaEmail author
  • A. R. G. Azevedo
  • J. Alexandre
  • E. B. Zanelato
  • S. N. Monteiro
  • N. A. Cerqueira
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The objective of this work is to present a proposal for a methodology for the dosage of multiple use mortars containing cement, hydrated lime, clay, limestone and sand. For this, the tests of consistency, compressive strength, water absorption, voids index and density in various proportions of mortars were carried out. The basis of the dosing method is to perform the simplex network planning of all these proportions, to obtain the optimum region where all the parameters present coherent values. The results demonstrate the possibility of using simplex as a mortar dosing methodology.

Keywords

Multiple use mortars Compressive strength Simplex methodology 

References

  1. 1.
    Carasek H, Araújo RC, Cascudo O, Angelin R (2016) Sand parameters that influence the consistency and bulk density of coating mortars. Revista Matéria 31(3):714–732CrossRefGoogle Scholar
  2. 2.
    Mattana AJ, Medeiros MHF, Silva NG, Costa MRMM (2012) Hierarchical analysis to choose between natural aggregate and rock crushing sand for coating mortars. Ambiente Construído, Porto Alegre 12(4):63–79CrossRefGoogle Scholar
  3. 3.
    Associação Brasileira de Normas Técnicas (2005) Mortar for laying and covering walls and ceilings—requirements: NBR 13281. Rio de JaneiroGoogle Scholar
  4. 4.
    Silva NG, Costa MR, Kanning R, Vasco C (2009) Characterization of industrialized mortars of the states of Paraná and Santa Catarina according to NBR 13281/2005, VIII SBTA, pp 1–15Google Scholar
  5. 5.
    Bezerra IMT, Souza J, Carvalho JBQ, Neves G (2011) Application of rice husk ash in setting mortars. Revista Brasileira de Engenharia Agrícola e Ambiental 15(6):639–645CrossRefGoogle Scholar
  6. 6.
    Palomar I, Barluenga G, Puentes J (2015) Lime–cement mortars for coating with improved thermal and acoustic performance. Constr Build Mater 75:306–314CrossRefGoogle Scholar
  7. 7.
    Destefani AZ, Holanda JNF (2011) Utilização do planejamento experimental em rede simplex no estudo de resíduo de rocha ornamental como filler para obtenção de máxima compacidade. Cerâmica 57:491–498CrossRefGoogle Scholar
  8. 8.
    Gomes AO, Neves CMM (2002) Proposal of a rational dosage method of mortar containing mortar. Ambiente Construído 2(2):19–30Google Scholar
  9. 9.
    Associação Brasileira de Normas Técnicas (2005) Mortar for laying and coating of walls and ceilings—determination of water retention: NBR 13277. Rio de JaneiroGoogle Scholar
  10. 10.
    Associação Brasileira de Normas Técnicas (2005) Mortar for laying and coating of walls and ceilings—determination of tensile strength in bending and compression: NBR 13279. Rio de JaneiroGoogle Scholar
  11. 11.
    Associação Brasileira de Normas Técnicas (2005) Mortar for laying and coating walls and ceilings—determination of water absorption by capillarity and capillary coefficient: NBR 15259. Rio de JaneiroGoogle Scholar
  12. 12.
    Associação Brasileira de Normas Técnicas (2009) Mortar and hardened concretes—determination of water absorption, voids index and specific mass: NBR 9778. Rio de JaneiroGoogle Scholar
  13. 13.
    Associação Brasileira de Normas Técnicas (2010) Wall coating of inorganic mortars—determination of tensile strength: NBR 13528. Rio de JaneiroGoogle Scholar
  14. 14.
    Zhutovsky S, Kovler K (2017) Influence of water to cement ratio on the efficiency of internal curing of high-performance concrete. Constr Build Mater 144:311–316CrossRefGoogle Scholar
  15. 15.
    Sing SB, Munjal P, Thammishetti N (2015) Role of water/cement ratio on strength development of cement mortar. J Build Eng 4:94–100CrossRefGoogle Scholar
  16. 16.
    Garbalinska H, Wygocka A (2014) Microstructure modification of cement mortars: effect on capillarity and frost-resistance. Constr Build Mater 258–266CrossRefGoogle Scholar
  17. 17.
    Tironia A, Trezzaa MA, Scianb AN, Irassara EF (2012) Incorporation of calcined clays in mortars: porous structure and compressive strength. Procedia Mater Sci 366–373CrossRefGoogle Scholar
  18. 18.
    Palomar I, Barluenga G (2018) A multiscale model for pervious lime-cement mortar with perlite and cellulose fibers. Constr Build Mater 160:136–144CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. T. Marvila
    • 1
    Email author
  • A. R. G. Azevedo
    • 1
    • 2
  • J. Alexandre
    • 1
  • E. B. Zanelato
    • 1
  • S. N. Monteiro
    • 2
  • N. A. Cerqueira
    • 1
  1. 1.LECIV – Civil Engineering LaboratoryUENF - State University of the Northern Rio de JaneiroCampos dos Goytacazes, Rio de JaneiroBrazil
  2. 2.Department of Materials ScienceIME - Military Institute of EngineeringRio de JaneiroBrazil

Personalised recommendations