Advertisement

Mortars with Pineapple Fibers for Use in Structural Reinforcement

  • M. T. MarvilaEmail author
  • A. R. G. Azevedo
  • J. Alexandre
  • E. B. Zanelato
  • S. N. Monteiro
  • D. Cecchin
  • L. F. Amaral
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Mortars are building materials used for various purposes such as for structural reinforcement. One of the great difficulties of this type of material is to maintain its parameters of workability without damaging its parameters of resistance to compression. Therefore, the objective of this work was to perform the incorporation of natural pineapple fibers into a 1:3 (cement:sand) mass mortar, without impairing its properties of workability and mechanical strength. Flow table, flexural tensile strength and compressive strength tests were performed on mortar containing 0, 2.5, 5 and 10% of pineapple fiber incorporation in mass. The results confirm that the mortar containing 10% significantly improves the mechanical properties but causes a high loss in the workability properties. Therefore, the proportion containing 5% of fibers is the most indicated because in addition to improving the mechanical strength does not affect the workability properties of the material.

Keywords

Mortars Structural reinforcement Pineapple fiber 

References

  1. 1.
    Jaramillo N, Hoyos D, Santa JF (2016) Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingeniería y Competitividad 18(2):151–162CrossRefGoogle Scholar
  2. 2.
    da Silva EJ, da Silva PD, Marques ML, Fornari Junior CCM, Garcia FC, Luzardo FHM (2014) Resistance to compression of mortars in function of the addition of coconut fiber. Revista Brasileira de Engenharia Agrícola e Ambiental Campina Grande 18(12):1268–1273CrossRefGoogle Scholar
  3. 3.
    dos Santos DOJ, Fontes CMA, Lima PRL (2017) Use of recycled kid aggregate in cementitious matrices for composites reinforced with sisal fibers. Revista Matéria 22(1)Google Scholar
  4. 4.
    Filho RDT, Joseph K, Ghavami K, England GL (1999) The use of sisal fibre as reinforcement in cement based composites. Revista Brasileira de Engenharia Agrícola e Ambiental 3(2):245–256CrossRefGoogle Scholar
  5. 5.
    Lima PRL, Santos RJ, Ferreira SR, Toledo Filho RD (2014) Characterization and treatment of sisal fiber residues for cement-based composite application. Eng Agríc Jaboticabal 34(5):812–825Google Scholar
  6. 6.
    de Souza do Prado K, da Silva Spinacé MA (2015) Characterization of fibers from pineapple’s crown, rice husks and cotton textile residues. Mater Res 18(3):530–537Google Scholar
  7. 7.
    Abdul Motaleb KZM, Shariful Islam Md, Hoque MB (2018) Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. Int J Biomater 1–7CrossRefGoogle Scholar
  8. 8.
    Associação Brasileira de Normas Técnicas. (2016) Mortar for laying and coating walls and ceilings—determination of the consistence index: NBR 13276. Rio de JaneiroGoogle Scholar
  9. 9.
    Associação Brasileira de Normas Técnicas (2005) Mortar for laying and coating of walls and ceilings—determination of tensile strength in bending and compression: NBR 13279. Rio de JaneiroGoogle Scholar
  10. 10.
    dos Santos Júnior JTS, da Silva IDG, de Borja EV (2012) Mortar for structural reinforcement with addition of metakaolin. VII CONNEPIGoogle Scholar
  11. 11.
    de Souza Picanço M, Ghavami K (2008) Behavior of cement mortar reinforced with Amazonian fibers subjected to compression. R Esc Minas Ouro Preto 61(1):13–18Google Scholar
  12. 12.
    Pimentel MG, das Chagas Borges JP, de Souza Picanço M, Ghavami K (2016) Bending answer and toughness analysis of mortar reinforced with Curauá fibers. Revista Matéria 21(1):18–26Google Scholar
  13. 13.
    de Campos Adriana, Teodoro Kelcilene B R, Marconcini José M, Mattoso Luiz HC, Martins-Franchetti Sandra M (2011) Effect of fiber treatments on properties of thermoplastic starch/polycaprolactone/sisal biocomposites. Polímeros 21(2):33–39Google Scholar
  14. 14.
    Santos PA, Spinacé MAS, Fermoselli KKG, De Paoli M-A (2009) Effect of the processing method and Curauá fiber treatment on the properties of polyamide-6 composites. Polímeros: Ciência e Tecnologia 19(1):31–39Google Scholar
  15. 15.
    Iozzi MA, Martins GS, Martins MA, Ferreira FC, Job AE, Mattoso LHC (2010) Study of the influence from chemical treatments of sisal fibers on the properties of composites with nitrile rubber. Polímeros: Ciência e Tecnologia 20(1):25–32CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. T. Marvila
    • 1
    Email author
  • A. R. G. Azevedo
    • 1
  • J. Alexandre
    • 1
  • E. B. Zanelato
    • 1
  • S. N. Monteiro
    • 2
  • D. Cecchin
    • 3
  • L. F. Amaral
    • 4
  1. 1.LECIV – Civil Engineering LaboratoryUENF - State University of the Northern Rio de JaneiroCampos dos Goytacazes, Rio de JaneiroBrazil
  2. 2.Department of Materials ScienceIME - Military Institute of EngineeringRio de JaneiroBrazil
  3. 3.Engineering School, Department of Agricultural Engineering and EnvironmentUFF - Federal Fluminense UniversityNiterói, Rio de JaneiroBrazil
  4. 4.LAMAV-Advanced Materials LaboratoryUENF - State University of the Northern Rio de JaneiroCampos dos Goytacazes, Rio de JaneiroBrazil

Personalised recommendations