Analysis of the Life Extension of ASTM A-36 Steel Structures Using the Concepts of Fracture

  • Kayan A. Carneiro
  • Victor B. Souza
  • Niander A. CerqueiraEmail author
  • Lucas Costa
  • Amanda C. Lima
  • Afonso R. G. Azevedo
  • Daniel P. Gallo
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Nowadays, metallic structures have a wide range of applications, being used for the construction of bridges, stadiums, warehouses, oil rigs, airports, silos, deposits, baking among many other applications. In most cases, these types of structures are large-sized and have great efforts, so they are subject to failure. Fracture mechanics is a science where you study the behavior of a certain flaw, the crack. Therefore, the present work aims to analyze the behavior of cracks in steel structures, more specifically on a pedestal of an offshore crane manufactured in Steel ASTM A-36. To accomplish such a feat, mechanical traction tests are required following the norm ASTM A-370, the fracture tenacity test according to the norm British Standard-7448 and the criticism of the cracks with the support of the norm British Standard-7910, with the aim of obtaining the mechanical properties of the material, the tenacity the fracture of the steel and the criticality of the cracks, respectively. The laboratory tests of metallography will be necessary for the characterization of the material. Subsequently, through the calculations and analysis of the data acquired by the tests, the behavior of three types of cracks will be determined, surface flaw, through-thickness flaw and embedded flaw and how they will interfere in the integrity of the structure. After deliberating the mechanical properties and mechanical efforts suffered by the structure, it will be possible to determine the criticality of the three types of cracks, with the intuition of determining a generalist model for each type of defect aiming at the extension of life useful structure.


Crack Fracture mechanics ASTM A-36 BS 7848 BS 7910 


  1. 1.
    Hertzberg RW, Vinci RP, Hertzberg JL (1996) Deformation and fracture mechanics of engineering materials. Wiley, New YorkGoogle Scholar
  2. 2.
    Anderson TL (2005) Fracture mechanics, 3rd edn. Taylor & Francis, Nova Iorque, p 630CrossRefGoogle Scholar
  3. 3.
    Estigarribia A et al (2017) Guindaste: Princípios e AplicaçõesGoogle Scholar
  4. 4.
  5. 5.
    Pinto AK, Xavier JAN (2009) Manutenção: função estratégica. QualitymarkGoogle Scholar
  6. 6.
    Perini FG (2014) Propriedades mecânicas e microestruturais de aços de alta resistência e baixa liga soldadosGoogle Scholar
  7. 7.
    Callister WD (2005) Ciência e Engenharia dos Materiais. 5th edn. LTC, 623pGoogle Scholar
  8. 8.
    Silva ALDCE, Mei PR (2006) Aços e ligas especiais. Edgard BlücherGoogle Scholar
  9. 9.
    Colpaert HCESA (2008) Metalografia dos produtos siderúrgicos comuns, vol 4Google Scholar
  10. 10.
    West Conshohocken (USA) (2011) ASTM International A-370. Standard test methods and definitions for mechanical testing of steel products: Norma. Estados UnidosGoogle Scholar
  11. 11.
    London (1991) BS 7448-1. British Standards Institution. Fracture mechanics toughness tests: Norma. CanadáGoogle Scholar
  12. 12.
    Souza (1982) Ensaios Mecânicos de Materiais Metálicos, 5th edn. Edgard Blücher Ltda, São PauloGoogle Scholar
  13. 13.
    Farahmand B, Bockrath G, Glassco J (2012) Fatigue and fracture mechanics of high risk parts: application of LEFM & FMDM theory. Springer Science & Business MediaGoogle Scholar
  14. 14.
    BS 7910:2005 (2005) Guide of methods for assessing acceptability of flaws in metallic structures. British Standards Institution, JulhoGoogle Scholar
  15. 15.
    Effting C (2004) Mecânica da fratura aplicada aos materiais duteis e frágeisGoogle Scholar
  16. 16.
    de Souza VB, Cerqueira NA, Nery S (2012) Estudo do comportamento de uma trinca utilizando conceitos da mecânica da fratura. REINPEC-Revista Interdisciplinar Pensamento Científico, vol 1, no 1Google Scholar
  17. 17.
    Medina JAH (2014) Avaliação de Previsões de Fratura Elastoplástica. Tese de Doutorado. PUC-RioGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kayan A. Carneiro
    • 1
  • Victor B. Souza
    • 1
    • 2
  • Niander A. Cerqueira
    • 1
    Email author
  • Lucas Costa
    • 1
  • Amanda C. Lima
    • 1
  • Afonso R. G. Azevedo
    • 1
    • 2
  • Daniel P. Gallo
    • 1
  1. 1.Sociedade Universitária Redentor – REDENTORItaperuna, Rio de JaneiroBrazil
  2. 2.Universidade Federal Fluminense – UFFNiteróiBrazil

Personalised recommendations