Advertisement

Alpha-Alumina Synthesis Using Gamma-Alumina Powders

  • Antônio Hortencio Munhoz JuniorEmail author
  • Gustavo Figueiredo Galhardo
  • Fernando dos Santos Ortega
  • Nelson Batista de Lima
  • Dênison Angelotti Moraes
  • Leila Figueiredo de Miranda
  • Francisco Rolando Valenzuela-Diaz
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Alpha-alumina is a ceramic material with applications as a biomaterial in femoral prostheses and teeth. The study of the influence of the precursor powder on the microstructure and mechanical properties of the alumina obtained is extremely important for the use of the same as biomaterials. Other applications of alpha-alumina industrially are in obtaining parts used at high temperatures and in chemically aggressive environments. Alpha-alumina can be synthesized from different raw materials resulting in ceramic products with different microstructures and consequently with diverse mechanical resistance. The synthesis of alpha-alumina pieces obtained from gamma-alumina powders was studied in order to verify the mechanical properties of the sintered material. The addition of graphene oxide in the gamma-alumina powder was also studied. To evaluate the mechanical strength of the obtained alpha-alumina specimens and to correlate the mechanical resistance with the precursor used in alpha-alumina synthesis it was used three -point bend strength testing.

Keywords

Alpha-alumina Gamma-alumina Pseudoboehmite Graphene oxide 

Notes

Acknowledgements

The authors thank Mackenzie Presbyterian University, CAPES, FAPESP Research Foundation (grant 2010/19157-9 and grant 2017/22396-4) and Mack Pesquisa for the sponsorship of this project.

References

  1. 1.
    Denes E, Barrière G, Poli E, Lévêque G (2018) Alumina biocompatibility. J Long Term Eff Med Implants 28(1):9–13CrossRefGoogle Scholar
  2. 2.
    Zhang X, Cui W, Page KL, Pearce CI, Bowden ME, Graham TR, Shen Z, Li P, Wang Z, Kerisit S, N’Diaye AT, Clark SB, Rosso KM (2018) Size and morphology controlled synthesis of boehmite nanoplates and crystal growth mechanisms. Cryst Growth Des 18(6):3596–3606.  https://doi.org/10.1021/acs.cgd.8b00394CrossRefGoogle Scholar
  3. 3.
    Mozafari MRM (2018) Biocompatibility of alumina‐based biomaterials—a review. J Cell Physiol 1–16.  https://doi.org/10.1002/jcp.27292CrossRefGoogle Scholar
  4. 4.
    Mussano F et al (2018) Nano-pore size of alumina affects osteoblastic response. Int J Mol Sci 19(2):528.  https://doi.org/10.3390/ijms19020528CrossRefGoogle Scholar
  5. 5.
    Azmi NFAN, Abdullah N, Pauzi MZM et al (2018) Highly permeable photo-catalytic mesoporous aluminum oxide membrane for oil emulsion separation. J Aust Ceram Soc.  https://doi.org/10.1007/s41779-018-0238-8
  6. 6.
    Salimi M, Pirouzfar V (2018) Synthesis of a novel nano-ceramic membrane for hydrogen separation and purification. J Aust Ceram Soc 54:271.  https://doi.org/10.1007/s41779-017-0151-6CrossRefGoogle Scholar
  7. 7.
    Rowthu S, Saeidi F, KilianWasmer PH, Kuebler J (2018) Flexural strength evaluations and fractography analyses of slip cast mesoporous submicron alumina. Ceram Int 44(5):5193–5201CrossRefGoogle Scholar
  8. 8.
    Moroz EM, Shefer KI, Zyuzin DA, Ivanova AS, Kulko EV, Goidin VV, Molchanov VV (2006) Local structure of pseudoboehmites. React Kinet Catal Lett 87(2):367–375CrossRefGoogle Scholar
  9. 9.
    Faria FP, Souza Santos P, Souza Santos H (2002) Spatial arrangement of fibrils in concentrated aqueous sols of fibrillar pseudoboehmite. Mater Chem Phys 76:267–273CrossRefGoogle Scholar
  10. 10.
    Vieira Coelho AC, Rocha GA, Souza Santos P, Souza Santos H, Kiyohara PK (2008) Specific surface area and structures of aluminas from fibrillar pseudoboehmite. Revista Matéria 13(2):329–341CrossRefGoogle Scholar
  11. 11.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  12. 12.
    Gao W (2015) The chemistry of graphene oxide. In: Gao W (eds) Graphene oxide. Springer, Cham.  https://doi.org/10.1007/978-3-319-15500-5_3CrossRefGoogle Scholar
  13. 13.
    Munhoz Jr AH, Miranda LF, Uehara GN (2006) Study of pseudoboehmite by sol-gel synthesis. Adv Sci Technol 45:260–265 (2006)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Antônio Hortencio Munhoz Junior
    • 1
    Email author
  • Gustavo Figueiredo Galhardo
    • 1
  • Fernando dos Santos Ortega
    • 2
  • Nelson Batista de Lima
    • 3
  • Dênison Angelotti Moraes
    • 1
  • Leila Figueiredo de Miranda
    • 1
  • Francisco Rolando Valenzuela-Diaz
    • 4
  1. 1.Universidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.FEI - São PauloSão PauloBrazil
  3. 3.IPEN - São PauloSão PauloBrazil
  4. 4.EP-USP - São PauloSão PauloBrazil

Personalised recommendations