Advertisement

Synthesis and Characterization of PVP/CaCO3-Ag Blend Hydrogel by Gamma Irradiation: Study of Drug Delivery System and Antimicrobial Activity

  • Angelica Tamiao ZafalonEmail author
  • Vinícius dos Santos Juvino
  • Luiz Gustavo Hiroki Komatsu
  • Duclerc Fernandes Parra
  • Ademar Lugao
  • Temesgen Samuel
  • Vijaya Rangari
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Chronic wounds are skin injuries with failed healing. They have become a public health problem that affects more than 2% of the population and the presence of bacteria resistances difficult of treatment. Pseudomonas aeruginosa is opportunist pathogens and the treatment is difficult and requires a long period of treatment. Hydrogels are structure polymeric tridimensional and biocompatible. They have been used as a controlled delivery system for treatment of topic infection. Studies have reported calcium carbonate and silver ion can improve the mechanical properties and biocide activity of hydrogel. Here in this study, hydrogels loaded CaCO3-Ag were prepared using poly (N-vinyl-2-pyrrolidone), poly (ethylene glycol), agar, calcium carbonate, silver nitrate followed gamma irradiation with 25 kGy dose. The gel fraction, behavior swelling and biocide action against P. aeruginosa was investigated. The degree of swelling of the hydrogel loaded CaCO3-Ag was 12% higher than the unloaded and exhibited antibacterial effects against P. aeruginosa and biofilm.

Keywords

Hydrogel Calcium carbonate Eggshell Silver Bacteria 

Notes

Acknowledgements

The authors would like to thank Coordination for the Improvement of Higher Education Personnel (CAPES, process n° 88881.134341/2016-01), Foundation for Research Support of the State of São Paulo (FAPESP, process n° 2016/19254-0), and Nuclear and Energy Research Institute (IPEN-CNEN/SP, Brazil). Dr. T. Samuel Lab is supported by NIH SC3GM109314.

References

  1. 1.
    Resmi R, Unnikrishnan S, Krishan LK, Krishnan VK (2017) Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J Appl Polym Sci.  https://doi.org/10.1002/app.44529
  2. 2.
    Annabi N, Rana D, Sani ES, Portillo-Lara R, Gifford JL, Fares MM, Mithieux SM, Weiss AS (2017) Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomater 139:229–243CrossRefGoogle Scholar
  3. 3.
    Mostafa M, Choonara YE, Marimuthu T, Kumar P, Toit LC, Vuuren SV, Pillay V (2017) Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. Int J Pharm 507:41–49Google Scholar
  4. 4.
    Konstantinow A, Fischer T, Ring J (2016) Effectiveness of collagen/oxidised regenerated cellulose/silver-containing composite wound dressing for the treatment of medium-depth split-thickness skin graft donor site wounds in multi-morbid patients: a prospective, non-comparative, single-centre study. Int Wound J 14(5):791–800CrossRefGoogle Scholar
  5. 5.
    Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mat Sci Eng C 59:109–119CrossRefGoogle Scholar
  6. 6.
    Lane DD, Fessler AK, Goo S, Williams DL, Stewart RJ (2016) Sustained tobramycin release from polyphosphate double network hydrogels. Acta Biomater 50:484–492CrossRefGoogle Scholar
  7. 7.
    Catanzano O, D’esposito V, Pulcrano G, Maiolino S, Ambrosio MR, Esposito M, Miro A, Ungaro F, Formisano P, Catania MR, Quaglia F (2017) Ultra-small silver nanoparticles loaded in alginate-hyaluronic acid hybrid hydrogels for treating infected wounds. Int J Polym Mater Po 66(12):626–634CrossRefGoogle Scholar
  8. 8.
    Khan ST, Musarraf J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 146:70–83CrossRefGoogle Scholar
  9. 9.
    McMahon S, Kennedy R, Duffy P, Vasquez JM, Wall JG, Tai H, Wang W (2016) Poly (ethylene glycol) based hyperbranched polymer from RAFT and its application as a silver sulfadiazine loaded anti-bacterial hydrogel in wound care. ACS Appl Mater Interfaces 8(4):26648–26656CrossRefGoogle Scholar
  10. 10.
    Naik K, Kowshik M (2017) The silver lining: towards the responsible and limited usage of silver. J Appl Microbiol 123:1068–1087CrossRefGoogle Scholar
  11. 11.
    Zafalon AT, Santos VJ, Lugao AB, Rangari V, Samuel T, Parra DF (2018) Stability of the neomycin antibiotic in irradiated polymeric biomaterials. Eur J Biomed Pharm 5(7):49–57Google Scholar
  12. 12.
    Singh D, Singh A, Singh R (2015) Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. J Biomater Sci Polym Ed 26:1269–1285CrossRefGoogle Scholar
  13. 13.
    Park JY, Kyung KH, Tsukada K, Kim SH, Shiratori S (2017) Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. Polym 123:194–202CrossRefGoogle Scholar
  14. 14.
    Sambudi NS, Park SB, Cho K (2016) Enhancing the mechanical properties of electrospun chitosan/poly(vinyl alcohol) fibers by mineralization with calcium carbonate. J Mater Sci 51:7742–7753CrossRefGoogle Scholar
  15. 15.
    Dutra JAP, Carvalho SG, Zampirolli ACD, Daltoe RD, Teixeira RM, Careta FP, Cotrim MAP, Orefice RL, Villanoca JCO (2016) Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: preparation and preliminary evaluation. Eur J Pharm Biopharm 113:11–23CrossRefGoogle Scholar
  16. 16.
    Wu HL, Hou XX, Branford-White C, Sun XZ, Um-I-Zahra S, Zhu LM (2015) Drug-loaded microparticles prepared by the one-step deposition of calcium carbonate/alginate onto cotton fabrics. J Appl Polym Sci 42618:1–8Google Scholar
  17. 17.
    Apalangyaa V, Rangari V, Tiimoba B, Jeelani S, Samuel T (2014) Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci 295:108–114CrossRefGoogle Scholar
  18. 18.
    Kilic AG, Malci S, Çelikbiçak O, Sahiner N, Salih B (2005) Gold recovery onto poly(acrylamide-allylthiourea) hydrogels synthesized by treating with gamma radiation. Anal Chim Acta 547:18–25CrossRefGoogle Scholar
  19. 19.
    Lugao AB, Rogero SO, Malmonge SM (2002) Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat Phys Chem 63:543–546CrossRefGoogle Scholar
  20. 20.
    Ajji Z, Othman I, Rosiak JM (1995) Production of hydrogel wound dressings using gamma radiation. Nucl Int Methds Phys Res 229:375–380CrossRefGoogle Scholar
  21. 21.
    Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(itaconic acid-co-lactic acid) hydrogel. Int Biol Macromol 101:612–620CrossRefGoogle Scholar
  22. 22.
    Rosiak JM, Ulanski P, Pajewski LA, Yoshi F, Makuuchi K (1995) Radiation formationof hydrogels for biomedical purposes some remarks and comments. Radiat Phys Chem 46:161–168CrossRefGoogle Scholar
  23. 23.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  24. 24.
    Oliani WL, Parra DF, Komatsu LGH, Lincopan N, Rangari VK, Lugao AB (2017) Fabrication of polypropylene/silver nanocomposites for biocidal applications. Mater Sci Eng, C 75:845–853CrossRefGoogle Scholar
  25. 25.
    Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49(10):4272–4279CrossRefGoogle Scholar
  26. 26.
    Hoekstra MJ, Westgate SJ, Muleer S (2016) Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J 14(1):172–179CrossRefGoogle Scholar
  27. 27.
    Metcalf DG, Parsons D, Bowler P (2016) Clinical safety and effectiveness evaluation of a new antimicrobial wound dressing designed to manage exudate, infection and biofilm. Int Wound J 14(1):203–213CrossRefGoogle Scholar
  28. 28.
    Ortega-Pena S, Hidalgo-Gonzalez C, Robson MC, Krotzsch E (2016) In vitro microbicidal, anti-biofilm and cytotoxic effects of different commercial antiseptics. Int Wound J 14(3):470–479CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Angelica Tamiao Zafalon
    • 1
    Email author
  • Vinícius dos Santos Juvino
    • 1
  • Luiz Gustavo Hiroki Komatsu
    • 1
  • Duclerc Fernandes Parra
    • 1
  • Ademar Lugao
    • 1
  • Temesgen Samuel
    • 2
  • Vijaya Rangari
    • 3
  1. 1.Nuclear and Energy Research Institute, IPEN, CNEN/SPSão PauloBrazil
  2. 2.College of Veterinary MedicineTuskegee UniversityTuskegeeUSA
  3. 3.Department of Materials Science and EngineeringTuskegee UniversityTuskegeeUSA

Personalised recommendations