Advertisement

Magnetic Characterization of CarTech® Hypocore™ Alloy at Cryogenic Temperatures

  • V. M. Meka
  • E. M. Fitterling
  • T. V. JayaramanEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Continued development of superior soft-magnetic alloys has resulted in improved efficiencies in key technologies, viz., electric motors, generators, transformers, etc. In this work, we present the magnetic properties of a low-cobalt content, soft-magnetic alloy—CarTech® Hypocore™ Alloy—at cryogenic temperatures, that has a unique combination of low coercivity and a high electrical resistivity at ambient temperature. Specimens were cut from the cold-rolled strips (thickness ~130 μm). The X-ray diffraction spectrum revealed the presence of α-phase (bcc solid solution of iron), at 300 K. Magnetic characterization from 60 to 300 K was performed on annealed specimens. The saturation magnetization decreased from ~221 Am2/kg (at 60 K) to ~216 Am2/kg (at 300 K), while the intrinsic coercivity varied between ~220 and ~230 A/m in that temperature regime. The magnetic saturation at 0 K and the magnetic moment per atom for the alloy were estimated as ~221.2 Am2/kg and ~2.17 μB, respectively. The observed soft-magnetic behavior of the alloy at cryogenic temperatures was compared with the other soft-magnetic alloys.

Keywords

CarTech® Hypocore™ Alloy Intrinsic coercivity Saturation magnetization Cryogenic temperatures 

Notes

Acknowledgements

The authors would like to thank the College of Engineering and Computer Science at the University of Michigan in Dearborn for the financial (Grant# U049150) and the infrastructural support to conduct the experimental work and Carpenter Technology Corporation for providing the CarTech® Hypocore™ Alloy specimens for the study.

References

  1. 1.
    Bozorth RM (1993) Ferromagnetism. IEEE Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Abraham T (1995) Magnets and magnetic materials: a technical economic analysis. JOM 47(1):16–18CrossRefGoogle Scholar
  3. 3.
    Sundar RS, Deevi SC (2005) Soft magnetic FeCo alloys: alloy development, processing, and properties. Inter Mater Rev 50:3CrossRefGoogle Scholar
  4. 4.
    Sourmail T (2005) Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties. Prog Mater Sci 50(7):816–880CrossRefGoogle Scholar
  5. 5.
    Cullity BD, Graham CD (2009) Introduction to magnetic materials. IEEE Press, Wiley, HobokenGoogle Scholar
  6. 6.
    Fingers RT, Coate JE, Dowling RE (1997) Mechanical properties of iron-cobalt alloys for power applications. Proc Intersoc Energy Convers Eng Conf 1:563Google Scholar
  7. 7.
    Moosbrugger C (2000) ASM ready reference: electrical and magnetic properties of metals. ASM International Materials Park, OhioGoogle Scholar
  8. 8.
    Fiorillo F (1996) Advances in Fe-Si properties and their interpretation. J Magn Magn Mater 157–158:428–431CrossRefGoogle Scholar
  9. 9.
    Carpenter Technical Fact Sheet—CarTech® Hypocore™ Alloy (2016) Copyright 2016 CRS Holdings Inc. (a subsidiary of Carpenter Technology Corporation). https://www.cartech.com/globalassets/literature-files/cartech-hypocore-fact-sheet
  10. 10.
    Carpenter Technical Data Sheet—CarTech® Hypocore™ Alloy (2017) Copyright 2017 CRS Holdings Inc. (a subsidiary of Carpenter Technology Corporation). https://www.cartech.com/en/product-solutions/cartech-hypocore-alloy/
  11. 11.
    Ruoff C (2017) New motor materials. Charg Electr Veh Mag 30:38–43. https://www.cartech.com/globalassets/literature-files/chargedevs-mag-iss-30—carpenter-hypocore.pdf
  12. 12.
    Meka VM, Jayaraman TV, Fitterling EM (2017) Effect of temperature on the magnetic properties of CarTech® Hypocore™ Alloy. IEEE Magn Let 8:5108604Google Scholar
  13. 13.
    Cohen MU (1935) Precision lattice constants from X-ray powder photographs. Rev Sci Instrum 6:68CrossRefGoogle Scholar
  14. 14.
    Cohen MU (1936) Errata; Precision lattice constants from X-ray powder photographs. Rev Sci Instrum 7:155CrossRefGoogle Scholar
  15. 15.
    Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum Publishing Corporation, Springer, New YorkCrossRefGoogle Scholar
  16. 16.
    Grossinger R (1981) A critical examination of the law of approach to saturation. Phys Stat Sol (a) 66:665–674CrossRefGoogle Scholar
  17. 17.
    Krishnan KM (2016) Fundamentals and applications of magnetic materials. Oxford University Press, OxfordCrossRefGoogle Scholar
  18. 18.
    Nishizawa T, Ishida K (1990) Binary alloy phase diagrams, vol 2 (TB Massalski, ed). ASM International, Metal Park, OhioGoogle Scholar
  19. 19.
    Kittel C (2004) Introduction to solid state physics. WileyGoogle Scholar
  20. 20.
    Bloch F (1930) The theory of ferromagnetism. Z Physik 61:206–219CrossRefGoogle Scholar
  21. 21.
    Zavaritskii NV, Tsarev VA (1963) Variation of the saturation magnetization of ferromagnetic substances at helium temperatures. Sov Phys JETP 16(5):1154–1158Google Scholar
  22. 22.
    Ackermann FW, Klawitter WA, Drautman JJ (1971) Magnetic properties of commercial soft magnetic alloys at cryogenic temperatures. Adv Cryo Eng 16:46–50CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • V. M. Meka
    • 1
  • E. M. Fitterling
    • 2
  • T. V. Jayaraman
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of MichiganDearbornUSA
  2. 2.Carpenter Technology CorporationReadingUSA

Personalised recommendations