Advertisement

“Strong” Turing-Hopf Instability for Reaction-Diffusion Systems

  • Giani Egaña Fernández
  • J Sarría González
  • Mariano Rodríguez RicardEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 275)

Abstract

Turing-Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this presentation, it is shown the parameter space in which the reaction-diffusion system modelling glycolysis and the Lengyel-Epstein model could show twinkling patterns. To do so, we follow the Ricard-Mischler procedure in Ricard and Mischler (J Nonlinear Sci 19(5):467–496, 2009, [18]), i.e., considering this phenomenom as a consequence of the instability generated by diffusion on the limit cycle which appears due to a Hopf bifurcation about the spatially homogeneous steady state.

Keywords

Turing instability Hopf bifurcation Reaction diffusion Twinkling pattern 

Notes

Acknowledgments

Mariano Rodríguez Ricard would like to express his gratitude to the organizers of the ODA Week at Imperial College London (Nov 23-28, 2016), Prof. Michael Ruzhansky and Dr. Julio Delgado, for their support and cordiality during the workshop.

References

  1. 1.
    Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach Science Publishers, New York (1961)Google Scholar
  3. 3.
    Díaz Rodrígues, L.A., Mistro, D.C., Petrovskii, S.: Pattern formation, long-term transients, and the Turing-Hopf Bifurcation in a space- and time-discrete predator-prey system. Bull. Math. Biol. (2010).  https://doi.org/10.1007/s11538-010-9593-5MathSciNetCrossRefGoogle Scholar
  4. 4.
    Egaña Fernández, G., Rodríguez Ricard, M.: Emergence and collapse of limit cycles in the glycolysis model. Revista Investigación Operacional 39(1), 23–32 (2018)MathSciNetGoogle Scholar
  5. 5.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)CrossRefGoogle Scholar
  6. 6.
    Just, W., Bose, M., Bose, S., Engel, H., Schöll, E.: Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E. 64(026219), 1–12 (2001).  https://doi.org/10.1103/PhysRevE.64.026219CrossRefGoogle Scholar
  7. 7.
    Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 3rd edn. Springer Science+Business Media, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Lacitignola, D., Bozzini, B., Sgura,I.: Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. (2014).  https://doi.org/10.1017/S0956792514000370MathSciNetCrossRefGoogle Scholar
  9. 9.
    Leiva, H.: Stability of a periodic solution for a system of parabolic equations. Appl. Anal. 60, 277–300 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lengyel, I., Epstein, I.R.: Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. Sciences 251, 650–652 (1991)CrossRefGoogle Scholar
  11. 11.
    Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction-diffusion system. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)CrossRefGoogle Scholar
  12. 12.
    Liu, P., Shi, J., Wang, Y., Feng, X.: Bifurcation analysis of reaction-diffusion Schnakenberg model. J. Math. Chem. 51, 2001–2019 (2013).  https://doi.org/10.1007/s10910-013-0196-xMathSciNetCrossRefGoogle Scholar
  13. 13.
    Marsden, J.E., McCracken, M.: The Hopf Bifurcation and its Applications. Springer, New York (1976)CrossRefGoogle Scholar
  14. 14.
    Meixner, M., De Wit, A., Bose, S., Schöll, E.: Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations. Phys. Rev. E 55(6), 6690–6697 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Murray, J.D.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. Springer, New York (2001)Google Scholar
  16. 16.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York (2003)zbMATHGoogle Scholar
  17. 17.
    Ricard, M.R.: On degenerate planar Hopf bifurcations. J. Phys. A. Math. Theor. 44, 065202 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ricard, M.R., Mischler, S.: Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19(5), 467–496 (2009).  https://doi.org/10.1007/s00332-009-9041-6MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)zbMATHGoogle Scholar
  20. 20.
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  21. 21.
    Sarría-González, J., Ricard, M.R.: Twinkling patterns for the Lengyel-Epstein reaction-diffusion model (2018) (in preparation)Google Scholar
  22. 22.
    Settani, G., Sgura, I.: Devising efficient numerical methods for oscillating patterns in reaction-diffusion systems. J. Comput. Appl. Math. (2015).  https://doi.org/10.1016/j.cam.2015.04.044MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sgura, I., Bozzini, B., Lacitignola, D.: Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math 236, 4132–4147 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sgura, I., Bozzini, B., Lacitignola, D.: Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth. In: AIP Conference Proceedings, vol. 1493, pp. 896–903. Melville, New York (2012).  https://doi.org/10.1063/1.4765594
  25. 25.
    Strier, D.E., Ponce, D.S.: Turing patterns inside cells. PLoS ONE 2, (10), e1053 (2007).  https://doi.org/10.1371/journal.pone.0001053CrossRefGoogle Scholar
  26. 26.
    Turing, A.M.: The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)Google Scholar
  27. 27.
    Wang, L., Zhao, H.: Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms. Appl. Math. Comput. 21, 9229–9244 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wu, X.P., Eshete, M.: Bautin bifurcation for the Lengyel-Epstein system. J. Math. Chem. 52, 2570–2580 (2014).  https://doi.org/10.1007/s10910-014-0401-6MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang, L., Berenstein, I., Epstein, I.R.: Segmented Waves from a Spatiotemporal Transverse Wave Instability. Phys. Rev. Lett. 95, 3, 038303 (2005).  https://doi.org/10.1103/PhysRevLett.95.038303
  30. 30.
    Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. Real World Appl. 9, 1038–1051 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhou, J., Shi, J.: Pattern formation in a general glycolysis reaction-diffusion system. IMA J. Appl. Math. 13, 1–36 (2015).  https://doi.org/10.1093/imamat/hxv013MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giani Egaña Fernández
    • 1
  • J Sarría González
    • 2
  • Mariano Rodríguez Ricard
    • 1
    Email author
  1. 1.Facultad de Matemática y Computación, San Lázaro y L, VedadoUniversidad de La HabanaHavanaCuba
  2. 2.Facultad 4Universidad de Ciencias InformáticasHavanaCuba

Personalised recommendations